In the binomial expression of ${{\left( a-b \right)}^{n}},n>5$, the sum of ${{5}^{th}}$ and ${{6}^{th}}$ terms is zero, then $\dfrac{a}{b}$ equals-
A. $\dfrac{5}{n-5}$
B. $\dfrac{6}{n-5}$
C. $\dfrac{n-5}{6}$
D. $\dfrac{n-4}{5}$
Answer
281.1k+ views
Hint: For finding the required ratio, we need to use the formula of binomial expression for ${{\left( a-b \right)}^{n}}$. After expansion of the binomial formula, we will choose ${{5}^{th}}$ and ${{6}^{th}}$ terms. Then, we will use the given condition in the question and it will provide us an equation. So, we will simplify that equation to get the required ratio.
Complete step-by-step solution:
Since, the binomial expression ${{\left( a-b \right)}^{n}}$ is given in the question. So, the expansion of binomial expression for up to 6 terms:
\[\Rightarrow {{\left( a-b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{(-b)}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{(-b)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{(-b)}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{(-b)}^{3}}+{}^{n}{{C}_{4}}{{a}^{n-4}}{{(-b)}^{4}}+{}^{n}{{C}_{5}}{{a}^{n-5}}{{(-b)}^{5}}\]
Now, we will take ${{5}^{th}}$ and ${{6}^{th}}$ terms as:
$\Rightarrow {{5}^{th}}\text{term}={}^{n}{{C}_{4}}{{a}^{n-4}}{{(-b)}^{4}}$
$\Rightarrow {{6}^{th}}\text{term}={}^{n}{{C}_{5}}{{a}^{n-5}}{{(-b)}^{5}}$
Here, we will use the given condition in the question that the sum of ${{5}^{th}}$ and ${{6}^{th}}$ terms is zero as:
$\Rightarrow {}^{n}{{C}_{4}}{{a}^{n-4}}{{(-b)}^{4}}+{}^{n}{{C}_{5}}{{a}^{n-5}}{{(-b)}^{5}}=0$
Now, we will expand the every term of above step to make calculation easy as:
$\Rightarrow \dfrac{n!}{4!\centerdot \left( n-4 \right)!}\centerdot \dfrac{{{a}^{n}}}{{{a}^{4}}}\centerdot {{b}^{4}}-\dfrac{n!}{5!\centerdot \left( n-5 \right)!}\centerdot \dfrac{{{a}^{n}}}{{{a}^{5}}}\centerdot {{b}^{5}}=0$
Here, we can write the above term as:
$\Rightarrow \dfrac{n!}{4!\centerdot \left( n-4 \right)!}\centerdot \dfrac{{{a}^{n}}}{{{a}^{4}}}\centerdot {{b}^{4}}=\dfrac{n!}{5!\centerdot \left( n-5 \right)!}\centerdot \dfrac{{{a}^{n}}}{{{a}^{5}}}\centerdot {{b}^{5}}$
In the above step, we can cancel out the equal like terms as:
$\Rightarrow \dfrac{1}{4!\centerdot \left( n-4 \right)!}\centerdot \dfrac{1}{{{a}^{4}}}\centerdot {{b}^{4}}=\dfrac{1}{5!\centerdot \left( n-5 \right)!}\centerdot \dfrac{1}{{{a}^{5}}}\centerdot {{b}^{5}}$
Again we will write the above step in the simple form to make calculation easy as:
$\Rightarrow \dfrac{1}{4!\centerdot \left( n-4 \right)\centerdot \left( n-5 \right)!}\centerdot \dfrac{1}{{{a}^{4}}}\centerdot {{b}^{4}}=\dfrac{1}{5\centerdot 4!\centerdot \left( n-5 \right)!}\centerdot \dfrac{1}{a\centerdot {{a}^{4}}}\centerdot b\centerdot {{b}^{4}}$
Here, we will again cancel out the equal terms as:
\[\Rightarrow \dfrac{1}{\left( n-4 \right)}=\dfrac{1}{5}\centerdot \dfrac{b}{a}\]
We can write the above term as:
\[\Rightarrow \dfrac{5}{\left( n-4 \right)}=\dfrac{b}{a}\]
The above step can be written as:
\[\Rightarrow \dfrac{a}{b}=\dfrac{\left( n-4 \right)}{5}\]
Hence, In the binomial expression of ${{\left( a-b \right)}^{n}},n>5$, the sum of ${{5}^{th}}$ and ${{6}^{th}}$ terms is zero, then $\dfrac{a}{b}$ equals to \[\dfrac{\left( n-4 \right)}{5}\].
Note: In a binomial experiment, there are \[\text{n}\] independent trials and each trial has only two possible outcomes. One is success and another one is failure. If the probability of success is the same for each trial, this probability is denoted by \[\text{p}\] and the probability of failure is \[\left( \text{1}-\text{p} \right)\].
For a binomial experiment, the probability of exactly $r$ successes in \[\text{n}\] trials is \[\text{P}\left( \text{k successes} \right)\text{ }=\text{ }{}^{n}{{\text{C}}_{r}}\text{ }{{\text{p}}^{r}}{{\left( \text{1 }-\text{ p} \right)}^{n-r}}\]
Complete step-by-step solution:
Since, the binomial expression ${{\left( a-b \right)}^{n}}$ is given in the question. So, the expansion of binomial expression for up to 6 terms:
\[\Rightarrow {{\left( a-b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{(-b)}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{(-b)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{(-b)}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{(-b)}^{3}}+{}^{n}{{C}_{4}}{{a}^{n-4}}{{(-b)}^{4}}+{}^{n}{{C}_{5}}{{a}^{n-5}}{{(-b)}^{5}}\]
Now, we will take ${{5}^{th}}$ and ${{6}^{th}}$ terms as:
$\Rightarrow {{5}^{th}}\text{term}={}^{n}{{C}_{4}}{{a}^{n-4}}{{(-b)}^{4}}$
$\Rightarrow {{6}^{th}}\text{term}={}^{n}{{C}_{5}}{{a}^{n-5}}{{(-b)}^{5}}$
Here, we will use the given condition in the question that the sum of ${{5}^{th}}$ and ${{6}^{th}}$ terms is zero as:
$\Rightarrow {}^{n}{{C}_{4}}{{a}^{n-4}}{{(-b)}^{4}}+{}^{n}{{C}_{5}}{{a}^{n-5}}{{(-b)}^{5}}=0$
Now, we will expand the every term of above step to make calculation easy as:
$\Rightarrow \dfrac{n!}{4!\centerdot \left( n-4 \right)!}\centerdot \dfrac{{{a}^{n}}}{{{a}^{4}}}\centerdot {{b}^{4}}-\dfrac{n!}{5!\centerdot \left( n-5 \right)!}\centerdot \dfrac{{{a}^{n}}}{{{a}^{5}}}\centerdot {{b}^{5}}=0$
Here, we can write the above term as:
$\Rightarrow \dfrac{n!}{4!\centerdot \left( n-4 \right)!}\centerdot \dfrac{{{a}^{n}}}{{{a}^{4}}}\centerdot {{b}^{4}}=\dfrac{n!}{5!\centerdot \left( n-5 \right)!}\centerdot \dfrac{{{a}^{n}}}{{{a}^{5}}}\centerdot {{b}^{5}}$
In the above step, we can cancel out the equal like terms as:
$\Rightarrow \dfrac{1}{4!\centerdot \left( n-4 \right)!}\centerdot \dfrac{1}{{{a}^{4}}}\centerdot {{b}^{4}}=\dfrac{1}{5!\centerdot \left( n-5 \right)!}\centerdot \dfrac{1}{{{a}^{5}}}\centerdot {{b}^{5}}$
Again we will write the above step in the simple form to make calculation easy as:
$\Rightarrow \dfrac{1}{4!\centerdot \left( n-4 \right)\centerdot \left( n-5 \right)!}\centerdot \dfrac{1}{{{a}^{4}}}\centerdot {{b}^{4}}=\dfrac{1}{5\centerdot 4!\centerdot \left( n-5 \right)!}\centerdot \dfrac{1}{a\centerdot {{a}^{4}}}\centerdot b\centerdot {{b}^{4}}$
Here, we will again cancel out the equal terms as:
\[\Rightarrow \dfrac{1}{\left( n-4 \right)}=\dfrac{1}{5}\centerdot \dfrac{b}{a}\]
We can write the above term as:
\[\Rightarrow \dfrac{5}{\left( n-4 \right)}=\dfrac{b}{a}\]
The above step can be written as:
\[\Rightarrow \dfrac{a}{b}=\dfrac{\left( n-4 \right)}{5}\]
Hence, In the binomial expression of ${{\left( a-b \right)}^{n}},n>5$, the sum of ${{5}^{th}}$ and ${{6}^{th}}$ terms is zero, then $\dfrac{a}{b}$ equals to \[\dfrac{\left( n-4 \right)}{5}\].
Note: In a binomial experiment, there are \[\text{n}\] independent trials and each trial has only two possible outcomes. One is success and another one is failure. If the probability of success is the same for each trial, this probability is denoted by \[\text{p}\] and the probability of failure is \[\left( \text{1}-\text{p} \right)\].
For a binomial experiment, the probability of exactly $r$ successes in \[\text{n}\] trials is \[\text{P}\left( \text{k successes} \right)\text{ }=\text{ }{}^{n}{{\text{C}}_{r}}\text{ }{{\text{p}}^{r}}{{\left( \text{1 }-\text{ p} \right)}^{n-r}}\]
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
The ray passing through the of the lens is not deviated class 10 physics CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

What is the nlx method How is it useful class 11 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What is the difference between anaerobic aerobic respiration class 10 biology CBSE
