In the Arrhenius $K = A{\exp ^{( - {E_a}/RT)}}$. A may be termed as rate constant at infinite temperature. If true enter 1, if false enter 0.
Answer
Verified
469.5k+ views
Hint: In the Arrhenius equation, $K = A{\exp ^{( - {E_a}/RT)}}$, you must know each term like A is the Arrhenius constant, K is known as the rate constant, ${E_a}$ is the activation energy, R is the gas constant, T is the temperature in Kelvin. Put the value of temperature infinity, and then solve the Arrhenius equation.
Complete step by step solution:
In 1899, Swedish chemist combined the concepts of activation energy and the Boltzmann distribution law into one of the most common important relationships which are known as the Arrhenius equation:
$K = A{\exp ^{( - {E_a}/RT)}}$
Here, in the Arrhenius equation, each term has its specific meaning.
A is known as the Arrhenius constant or pre-exponential factor.
K is the rate constant of the reaction.
${E_a}$ is the activation energy required for a reaction.
R is the gas constant and T represents the temperature in Kelvin.
Now, let us put the value of temperature equals to infinity in the Arrhenius equation. The equation will be then as follows:
\[K = A{\exp ^{( - {E_a}/R(\infty ))}} = A{\exp ^{( - {E_a}/\infty )}} = A{\exp ^{(0)}}\]
When temperature is infinite, the value of the term ($ {- {E_a}/RT}$) becomes zero.
And, \[\exp ^{0} = 1\]
Thus,
\[K = A{\exp ^{(0)}} = A\]
Hence, the value of the Arrhenius constant (A) becomes equal to the rate constant. Thus, we can say A may be termed as the rate constant at infinite temperature.
Hence, the given statement in the question is true.
Note: Arrhenius equation can also be written in a non-exponential form and this form is more convenient to use and interpret. Taking the natural log on both sides and separating the exponential and Arrhenius factor, the Arrhenius equation is:
$K = A{\exp ^{( - {E_a}/RT)}}$
$\begin{align}
& \ln K = \ln (A{\exp ^{( - {E_a}/RT)}}) \\
& \ln K = \ln A + \ln {\exp ^{( - {E_a}/RT)}} \\
& \ln K = \ln A + \dfrac{{ - {E_a}}}{{RT}} \\
& \ln K = \ln A - \dfrac{{{E_a}}}{{RT}} \\
\end{align} $
Complete step by step solution:
In 1899, Swedish chemist combined the concepts of activation energy and the Boltzmann distribution law into one of the most common important relationships which are known as the Arrhenius equation:
$K = A{\exp ^{( - {E_a}/RT)}}$
Here, in the Arrhenius equation, each term has its specific meaning.
A is known as the Arrhenius constant or pre-exponential factor.
K is the rate constant of the reaction.
${E_a}$ is the activation energy required for a reaction.
R is the gas constant and T represents the temperature in Kelvin.
Now, let us put the value of temperature equals to infinity in the Arrhenius equation. The equation will be then as follows:
\[K = A{\exp ^{( - {E_a}/R(\infty ))}} = A{\exp ^{( - {E_a}/\infty )}} = A{\exp ^{(0)}}\]
When temperature is infinite, the value of the term ($ {- {E_a}/RT}$) becomes zero.
And, \[\exp ^{0} = 1\]
Thus,
\[K = A{\exp ^{(0)}} = A\]
Hence, the value of the Arrhenius constant (A) becomes equal to the rate constant. Thus, we can say A may be termed as the rate constant at infinite temperature.
Hence, the given statement in the question is true.
Note: Arrhenius equation can also be written in a non-exponential form and this form is more convenient to use and interpret. Taking the natural log on both sides and separating the exponential and Arrhenius factor, the Arrhenius equation is:
$K = A{\exp ^{( - {E_a}/RT)}}$
$\begin{align}
& \ln K = \ln (A{\exp ^{( - {E_a}/RT)}}) \\
& \ln K = \ln A + \ln {\exp ^{( - {E_a}/RT)}} \\
& \ln K = \ln A + \dfrac{{ - {E_a}}}{{RT}} \\
& \ln K = \ln A - \dfrac{{{E_a}}}{{RT}} \\
\end{align} $
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What is the chemical name of Iron class 11 chemistry CBSE
Number of oneone functions from A to B where nA 4 and class 11 maths CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE