
In presence of a catalyst, the activation energy is lowered by 3kcal at. Hence, the rate of reaction will increase by:
(A) 32 times
(B) 243 times
(C) 3 times
(D) 148 times
Answer
584.7k+ views
Hint: Presence of catalyst increases the rate of reaction and lowers the activation energy without itself being consumed in the reaction. Rate of reaction is directly proportional to the negative exponential of Activation energy.
Complete answer:
Catalyst provide surface area for the reaction, and when surface area for reaction is increased , more molecules come together and rate of reaction increases. Catalyst itself do not get consumed in the reaction and is let at the end of the reaction as it is.
Any reaction proceeds through consuming some amount of activation energy. Catalyst provide a new reaction pathway, in which activation energy is lowered compared to the reaction where catalyst is not used.A catalyst increases the rate of a reaction by lowering the activation energy so that more reactant molecules collide with enough energy to surmount the smaller energy barrier.
Relation of activation energy and rate constant is given by Arrhenius equation,
\[k=A{{e}^{\frac{-{{E}_{a}}}{RT}}}\]
Where, k is the rate constant,
${{E}_{a}}$ is the activation energy,
R is the universal gas constant=2cal
T is the temperature in Kelvin= ${{27}^{\circ }}C$+273 = 300K
When compared with rate of reaction, with and without the use of catalyst, the expression will be written as,
\[\dfrac{{{k}_{1}}}{{{k}_{2}}}=\frac{{{e}^{\dfrac{-{{E}_{a1}}}{RT}}}}{{{e}^{\dfrac{-{{E}_{a2}}}{RT}}}}\]
Where ${{E}_{a1}}$ = activation energy without the use of catalyst
${{E}_{a2}}$= activation energy with the use of catalyst
${{k}_{1}}$= rate of reaction without the use of catalyst
${{k}_{2}}$= rate of reaction with the use of catalyst
\[\dfrac{{{k}_{1}}}{{{k}_{2}}}={{e}^{\dfrac{^{{{E}_{a1}}-{{E}_{a2}}}}{RT}}}\]
Given in the question value of difference of the two activation energies is 3kcal, putting the values in the equation, we get,
\[\begin{align}
& \dfrac{{{k}_{2}}}{{{k}_{1}}}={{e}^{\dfrac{3000}{2\times 300}}} \\
& \Rightarrow \dfrac{{{k}_{2}}}{{{k}_{1}}}={{e}^{5}} \\
& \Rightarrow {{k}_{2}}=148{{k}_{1}} \\
\end{align}\]
The rate of reaction is increased by 148 times.
So, the correct answer is “Option D”.
Note: Other than presence of catalyst, there are many other factors which effect the rate of reaction, they are, concentration of reaction, physical state of reactants an surface area, optimum temperature and sometimes optimum pH.
Complete answer:
Catalyst provide surface area for the reaction, and when surface area for reaction is increased , more molecules come together and rate of reaction increases. Catalyst itself do not get consumed in the reaction and is let at the end of the reaction as it is.
Any reaction proceeds through consuming some amount of activation energy. Catalyst provide a new reaction pathway, in which activation energy is lowered compared to the reaction where catalyst is not used.A catalyst increases the rate of a reaction by lowering the activation energy so that more reactant molecules collide with enough energy to surmount the smaller energy barrier.
Relation of activation energy and rate constant is given by Arrhenius equation,
\[k=A{{e}^{\frac{-{{E}_{a}}}{RT}}}\]
Where, k is the rate constant,
${{E}_{a}}$ is the activation energy,
R is the universal gas constant=2cal
T is the temperature in Kelvin= ${{27}^{\circ }}C$+273 = 300K
When compared with rate of reaction, with and without the use of catalyst, the expression will be written as,
\[\dfrac{{{k}_{1}}}{{{k}_{2}}}=\frac{{{e}^{\dfrac{-{{E}_{a1}}}{RT}}}}{{{e}^{\dfrac{-{{E}_{a2}}}{RT}}}}\]
Where ${{E}_{a1}}$ = activation energy without the use of catalyst
${{E}_{a2}}$= activation energy with the use of catalyst
${{k}_{1}}$= rate of reaction without the use of catalyst
${{k}_{2}}$= rate of reaction with the use of catalyst
\[\dfrac{{{k}_{1}}}{{{k}_{2}}}={{e}^{\dfrac{^{{{E}_{a1}}-{{E}_{a2}}}}{RT}}}\]
Given in the question value of difference of the two activation energies is 3kcal, putting the values in the equation, we get,
\[\begin{align}
& \dfrac{{{k}_{2}}}{{{k}_{1}}}={{e}^{\dfrac{3000}{2\times 300}}} \\
& \Rightarrow \dfrac{{{k}_{2}}}{{{k}_{1}}}={{e}^{5}} \\
& \Rightarrow {{k}_{2}}=148{{k}_{1}} \\
\end{align}\]
The rate of reaction is increased by 148 times.
So, the correct answer is “Option D”.
Note: Other than presence of catalyst, there are many other factors which effect the rate of reaction, they are, concentration of reaction, physical state of reactants an surface area, optimum temperature and sometimes optimum pH.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

