
In Melde’s experiment, in parallel position when mass \[{m_1}\] is kept in the pan, then the number of loops obtained is ${p_1}$ and when mass ${m_2}$ is kept the number of loops is ${p_2}$; then the mass of pan ${m_0}$ is
A. \[{m_0} = \dfrac{{p_1^2 - p_2^2}}{{{m_2}p_2^2 - {m_1}p_1^2}}\]
B. \[{m_0} = \dfrac{{{m_2}p_2^2 - {m_1}p_1^2}}{{p_1^2 - p_2^2}}\]
C. \[{m_0} = \dfrac{{{m_2}p_2^2 + {m_1}p_1^2}}{{p_1^2 - p_2^2}}\]
D. \[{m_0} = \dfrac{{{m_2}p_2^2 - {m_1}p_1^2}}{{p_1^2 + p_2^2}}\]
Answer
431.4k+ views
Hint:Melde’s experiment consists of a light string which is tied to one of the prongs of a tuning fork that is mounted on a sounding board whereas the other end of the string is passed over a pulley which is horizontal and a pan which is lighter is suspended from the free end. By changing the weight placed in the pan the tension in the string can be adjusted while by moving the pulley towards or away from the fork the vibrating length can be altered.
Complete step by step answer:
In Melde’s experiment, the frequency of the tuning fork is given by
$N = \dfrac{p}{l}\sqrt {\dfrac{T}{M}} $ ………….. $\left( 1 \right)$
Where, $T = $ Tension, $M = $ Mass per unit length, $p = $ Number of loops and $N = $ Frequency.
Case 1:
$N = \dfrac{{{p_1}}}{l}\sqrt {\dfrac{{\left( {{m_0} + {m_1}} \right)g}}{M}} $ ……….. $\left( 2 \right)$
Case 2:
$N = \dfrac{{{p_2}}}{l}\sqrt {\dfrac{{\left( {{m_0} + {m_2}} \right)g}}{M}} $ ……….. $\left( 3 \right)\\$
Comparing equation $\left( 2 \right)$ and equation $\left( 3 \right)$
$\dfrac{{{p_1}}}{l}\sqrt {\dfrac{{\left( {{m_0} + {m_1}} \right)g}}{M}} = \dfrac{{{p_2}}}{l}\sqrt {\dfrac{{\left( {{m_0} + {m_2}} \right)g}}{M}} \\$
On simplifying and squaring on both sides above equation becomes
\[{\left( {{p_1}} \right)^2}\left( {{m_0} + {m_1}} \right) = {\left( {{p_2}} \right)^2}\left( {{m_0} + {m_2}} \right)\\\]
On simplifying above equation
\[{\left( {{p_1}} \right)^2}{m_0} + {\left( {{p_1}} \right)^2}{m_1} = {\left( {{p_2}} \right)^2}{m_0} + {\left( {{p_2}} \right)^2}{m_2}\\\]
Taking ${m_0}$ terms to L.H.S
\[\left( {p_1^2 - p_2^2} \right){m_0}_{} = {\left( {{p_2}} \right)^2}{m_2} - {\left( {{p_1}} \right)^2}{m_1}\\\]
\[\therefore {m_0} = \dfrac{{{{\left( {{p_2}} \right)}^2}{m_2} - {{\left( {{p_1}} \right)}^2}{m_1}}}{{\left( {p_1^2 - p_2^2} \right)}}\]
Hence, option B is correct.
Note:The fork is adjusted in such a way that its arms are transverse or perpendicular position to the length of the string. By gently hammering a prong the fork is set into vibration.The loops are formed due to the wave reflected back from the pulley and the wave starting from the fork and it will travel towards the pulley.
Complete step by step answer:
In Melde’s experiment, the frequency of the tuning fork is given by
$N = \dfrac{p}{l}\sqrt {\dfrac{T}{M}} $ ………….. $\left( 1 \right)$
Where, $T = $ Tension, $M = $ Mass per unit length, $p = $ Number of loops and $N = $ Frequency.
Case 1:
$N = \dfrac{{{p_1}}}{l}\sqrt {\dfrac{{\left( {{m_0} + {m_1}} \right)g}}{M}} $ ……….. $\left( 2 \right)$
Case 2:
$N = \dfrac{{{p_2}}}{l}\sqrt {\dfrac{{\left( {{m_0} + {m_2}} \right)g}}{M}} $ ……….. $\left( 3 \right)\\$
Comparing equation $\left( 2 \right)$ and equation $\left( 3 \right)$
$\dfrac{{{p_1}}}{l}\sqrt {\dfrac{{\left( {{m_0} + {m_1}} \right)g}}{M}} = \dfrac{{{p_2}}}{l}\sqrt {\dfrac{{\left( {{m_0} + {m_2}} \right)g}}{M}} \\$
On simplifying and squaring on both sides above equation becomes
\[{\left( {{p_1}} \right)^2}\left( {{m_0} + {m_1}} \right) = {\left( {{p_2}} \right)^2}\left( {{m_0} + {m_2}} \right)\\\]
On simplifying above equation
\[{\left( {{p_1}} \right)^2}{m_0} + {\left( {{p_1}} \right)^2}{m_1} = {\left( {{p_2}} \right)^2}{m_0} + {\left( {{p_2}} \right)^2}{m_2}\\\]
Taking ${m_0}$ terms to L.H.S
\[\left( {p_1^2 - p_2^2} \right){m_0}_{} = {\left( {{p_2}} \right)^2}{m_2} - {\left( {{p_1}} \right)^2}{m_1}\\\]
\[\therefore {m_0} = \dfrac{{{{\left( {{p_2}} \right)}^2}{m_2} - {{\left( {{p_1}} \right)}^2}{m_1}}}{{\left( {p_1^2 - p_2^2} \right)}}\]
Hence, option B is correct.
Note:The fork is adjusted in such a way that its arms are transverse or perpendicular position to the length of the string. By gently hammering a prong the fork is set into vibration.The loops are formed due to the wave reflected back from the pulley and the wave starting from the fork and it will travel towards the pulley.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
