
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
Answer
606.3k+ views
Hint: Let us assume that we have n different things in total. From the concept of permutations and combinations, the number of ways in which we can choose r things from these n things is given by the formula ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ . Using this formula, we can solve this question.
Complete step-by-step answer:
Before proceeding with the question, we must know the formula that will be required to solve this question.
From permutations and combinations, if we are given n different things from which we are required to select r things, then the number of ways in which we can do so is given by the formula,
${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ . . . . . . . . . . . (1)
In this question, a student has to choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student. We are required to find the number of ways in which he can choose the courses.
Since 2 courses are compulsory, he/she has to choose both of them. Using formula (1), the number of ways in which this can be done is equal to,
$\begin{align}
& {}^{2}{{C}_{2}}=\dfrac{2!}{2!\left( 2-2 \right)!} \\
& \Rightarrow {}^{2}{{C}_{2}}=\dfrac{2!}{2!\left( 0 \right)!} \\
& \Rightarrow {}^{2}{{C}_{2}}=1 \\
\end{align}$
From the remaining 7 courses, the student has to choose 3 courses. Using formula (1), the number of ways in which he can do so is equal to,
$\begin{align}
& {}^{7}{{C}_{3}}=\dfrac{7!}{3!\left( 7-3 \right)!} \\
& \Rightarrow {}^{7}{{C}_{3}}=\dfrac{7\times 6\times 5\times 4!}{\left( 3\times 2\times 1 \right)\left( 4 \right)!} \\
& \Rightarrow {}^{7}{{C}_{3}}=35 \\
\end{align}$
The number of ways in which the student can choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student will be given by multiplying the above two obtained numbers and is equal to 35 $\times $ 1.
Hence, the answer is 35.
Note:
There is a possibility that one may commit a mistake while finding the number of ways in which the student can choose 3 courses from the non - compulsory. It is possible that he/she chose these 3 courses from 9 courses instead of the 7 courses. But since 2 of these 9 courses are compulsory, we have to choose the 3 non-compulsory courses from the 7 remaining courses.
Complete step-by-step answer:
Before proceeding with the question, we must know the formula that will be required to solve this question.
From permutations and combinations, if we are given n different things from which we are required to select r things, then the number of ways in which we can do so is given by the formula,
${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ . . . . . . . . . . . (1)
In this question, a student has to choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student. We are required to find the number of ways in which he can choose the courses.
Since 2 courses are compulsory, he/she has to choose both of them. Using formula (1), the number of ways in which this can be done is equal to,
$\begin{align}
& {}^{2}{{C}_{2}}=\dfrac{2!}{2!\left( 2-2 \right)!} \\
& \Rightarrow {}^{2}{{C}_{2}}=\dfrac{2!}{2!\left( 0 \right)!} \\
& \Rightarrow {}^{2}{{C}_{2}}=1 \\
\end{align}$
From the remaining 7 courses, the student has to choose 3 courses. Using formula (1), the number of ways in which he can do so is equal to,
$\begin{align}
& {}^{7}{{C}_{3}}=\dfrac{7!}{3!\left( 7-3 \right)!} \\
& \Rightarrow {}^{7}{{C}_{3}}=\dfrac{7\times 6\times 5\times 4!}{\left( 3\times 2\times 1 \right)\left( 4 \right)!} \\
& \Rightarrow {}^{7}{{C}_{3}}=35 \\
\end{align}$
The number of ways in which the student can choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student will be given by multiplying the above two obtained numbers and is equal to 35 $\times $ 1.
Hence, the answer is 35.
Note:
There is a possibility that one may commit a mistake while finding the number of ways in which the student can choose 3 courses from the non - compulsory. It is possible that he/she chose these 3 courses from 9 courses instead of the 7 courses. But since 2 of these 9 courses are compulsory, we have to choose the 3 non-compulsory courses from the 7 remaining courses.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

