In how many ways can $3$ sovereigns be given away when there are $4$ applicants and any applicant may have either $0,1,2$ or $3$sovereigns.
$A)15$
$B)20$
$C)24$
$D)48$
Answer
280.5k+ views
Hint: To solve this question we need to have the concept of combinations. We will be analysing the problem and will be considering 4 non integral numbers which will result into three sovereigns and then writing of the number of ways in which it should be distributed among the four applicants.
Complete step-by-step solution:
The question asks us to find the number of ways in which three sovereigns should be given to four applicants where the applicants can be given either of $0,1,2$or $3$ sovereigns.
The first step to solve this question is to consider four non-negative integral variables which show the number of sovereigns given to the four applicants, so consider the variables to be $x,y,z,w$ . So on writing it mathematically we get:
$\Rightarrow x+y+z+w=3$
The second step is to find the number of required ways in which number of sovereigns should be distributed. For calculation we will use the function of Combination. So in mathematical form we will write:
$\Rightarrow {}^{\left( 3+4-1 \right)}{{C}_{\left( 4-1 \right)}}$
The above formula shows the distribution of n things among r distinct persons as here we had to give the 3 sovereigns to 4 persons.
On calculating the term we get:
$\Rightarrow {}^{6}{{C}_{3}}$
To solve the above Combination we will use the formula of the combination ${}^{n}{{C}_{r}}$ as $\dfrac{n!}{r!\left( n-r \right)!}$ . On applying the same formula we get:
$\Rightarrow {}^{6}{{C}_{3}}=\dfrac{6!}{3!\left( 6-3 \right)!}$
$\Rightarrow {}^{6}{{C}_{3}}=\dfrac{6!}{3!3!}$
On further calculation the above expression changes to:
$\Rightarrow {}^{6}{{C}_{3}}=\dfrac{6\times 5\times 4\times 3!}{3!3!}$
Now the term $3!$ will cancel since the term is common.
$\Rightarrow {}^{6}{{C}_{3}}=\dfrac{6\times 5\times 4}{3\times 2\times 1}$
$\Rightarrow {}^{6}{{C}_{3}}=5\times 4$
$\Rightarrow {}^{6}{{C}_{3}}=20$
$\therefore $ The number of ways can $3$ sovereigns be given away when there are $4$ applicants and any applicant may have either $0,1,2$ or $3$sovereigns are option $B)20$.
Note: We need to remember the formula for the Combination ${}^{n}{{C}_{r}}$ is $\dfrac{n!}{r!\left( n-r \right)!}$ . The combination is used to find the number of arrangements which can take place. Do remember the term $n!$ means the product of all the natural numbers from $1$ to $n$. Mathematically it is written as: $n!=1\times 2\times 3.......\times \left( n-1 \right)\times \left( n \right)$
Complete step-by-step solution:
The question asks us to find the number of ways in which three sovereigns should be given to four applicants where the applicants can be given either of $0,1,2$or $3$ sovereigns.
The first step to solve this question is to consider four non-negative integral variables which show the number of sovereigns given to the four applicants, so consider the variables to be $x,y,z,w$ . So on writing it mathematically we get:
$\Rightarrow x+y+z+w=3$
The second step is to find the number of required ways in which number of sovereigns should be distributed. For calculation we will use the function of Combination. So in mathematical form we will write:
$\Rightarrow {}^{\left( 3+4-1 \right)}{{C}_{\left( 4-1 \right)}}$
The above formula shows the distribution of n things among r distinct persons as here we had to give the 3 sovereigns to 4 persons.
On calculating the term we get:
$\Rightarrow {}^{6}{{C}_{3}}$
To solve the above Combination we will use the formula of the combination ${}^{n}{{C}_{r}}$ as $\dfrac{n!}{r!\left( n-r \right)!}$ . On applying the same formula we get:
$\Rightarrow {}^{6}{{C}_{3}}=\dfrac{6!}{3!\left( 6-3 \right)!}$
$\Rightarrow {}^{6}{{C}_{3}}=\dfrac{6!}{3!3!}$
On further calculation the above expression changes to:
$\Rightarrow {}^{6}{{C}_{3}}=\dfrac{6\times 5\times 4\times 3!}{3!3!}$
Now the term $3!$ will cancel since the term is common.
$\Rightarrow {}^{6}{{C}_{3}}=\dfrac{6\times 5\times 4}{3\times 2\times 1}$
$\Rightarrow {}^{6}{{C}_{3}}=5\times 4$
$\Rightarrow {}^{6}{{C}_{3}}=20$
$\therefore $ The number of ways can $3$ sovereigns be given away when there are $4$ applicants and any applicant may have either $0,1,2$ or $3$sovereigns are option $B)20$.
Note: We need to remember the formula for the Combination ${}^{n}{{C}_{r}}$ is $\dfrac{n!}{r!\left( n-r \right)!}$ . The combination is used to find the number of arrangements which can take place. Do remember the term $n!$ means the product of all the natural numbers from $1$ to $n$. Mathematically it is written as: $n!=1\times 2\times 3.......\times \left( n-1 \right)\times \left( n \right)$
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
The ray passing through the of the lens is not deviated class 10 physics CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

What is the nlx method How is it useful class 11 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What is the difference between anaerobic aerobic respiration class 10 biology CBSE
