
In Haber’s process of ammonia manufacture:
${{{N}}_{{2}}}{{(g) + 3}}{{{H}}_{{2}}}{{(g) }} \to {{2N}}{{{H}}_{{3}}}{{(g)}}$ ; ${{\Delta }}{{{H}}^{{0}}}_{{{2}}{{{5}}^{{0}}}{{C}}}{{ = - 92}}{{.2 kJ}}$
If $C_p$ is independent of temperature, then reaction at ${100^0}{{C}}$ as compared to that of ${{2}}{{{5}}^{{0}}}{{C}}$ will be.
A.More endothermic
B.Less endothermic
C.More exothermic
D.Less exothermic
Answer
554.1k+ views
Hint:The Nitrogen from the air is combined with hydrogen from methane to form ammonia. This is a reversible reaction. It is the industrial method of preparing ammonia. High temperature and pressure should be maintained in this process. This reaction is an exothermic process that involves the release of energy. The nitrogen is obtained by liquefaction of air and hydrogen is obtained by steam reforming of natural gas. ${{{C}}_{{p}}}$ is the specific heat capacity at constant pressure.
Complete step by step answer:
Standard enthalpy of formation of ammonia at ${{2}}{{{5}}^{{0}}}{{C}}$ its given as ${{ - 92}}{{.2 kJ}}$ which shows this is an exothermic reaction
Here, ${{{C}}_{{p}}}$ each molecule is given and we can calculate the change in heat capacity.
\[{{\Delta }}{{{C}}_{{p}}}{{ = 2}}{{{C}}_{{{p(N}}{{{H}}_{{3}}}{{)}}}}{{ - }}{{{C}}_{{{p(}}{{{N}}_{{2}}}{{)}}}}{{ - 3}}{{{C}}_{{{P(}}{{{H}}_{{2}}}{{)}}}}\]
$ \Rightarrow {{\Delta }}{{{C}}_{{P}}}{{ = 2(35}}{{.1) - (29}}{{.1) - 3(28}}{{.8) J}}{{{K}}^{{{ - 1}}}}{{mo}}{{{l}}^{{{ - 1}}}}$
$ \Rightarrow {{\Delta }}{{{C}}_{{P}}}{{ = - 45}}{{.3 J}}{{{K}}^{{{ - 1}}}}{{mo}}{{{l}}^{{{ - 1}}}}$
We know that at constant pressure,
The change in enthalpy is the difference between the enthalpy of the product and the enthalpy of the reactant.
${{\Delta H = }}{{{H}}_{{p}}}{{ - }}{{{H}}_{{R}}} \to eq1$
We know that ${{H = }}{{{C}}_{{p}}}{{\Delta T}}$ at constant pressure,
So we can write $\Delta {{H = \Delta }}{{{C}}_{{p}}}{{dT}} \to {{eq2}}$
From equation 1 and 2 we can write as ${{\Delta }}{{{H}}_2}{{ - \Delta }}{{{H}}_1}{{ = \Delta }}{{{C}}_{{p}}}{{dT}}$
Here, ${{\Delta }}{{{H}}_{{2}}}$ is the enthalpy at ${100^0}{{C}}$ and ${{\Delta }}{{{H}}_{{1}}}$is the enthalpy change at ${{2}}{{{5}}^{{0}}}{{C}}$
So it can be written as ${{\Delta }}{{{H}}_{{2}}}{{ - ( - 92}}{{.2 \times 1}}{{{0}}^{{3}}}{{) = - 45}}{{.3(}}{{{T}}_{{2}}}{{ - }}{{{T}}_{{1}}}{{)}}$
$ \Rightarrow {{\Delta }}{{{H}}_{{2}}}{{ - ( - 92}}{{.2 \times 1}}{{{0}}^{{3}}}{{) = - 45}}{{.3(100 - 25)}}$
\[ \Rightarrow \] ${{\Delta }}{{{H}}_{{2}}}{{ = - 95600 J/mol}}$
\[ \Rightarrow \] ${{\Delta }}{{{H}}_{{2}}}{{ = - 95}}{{.6 kJ/mol}}$
It is less than the enthalpy change at ${{2}}{{{5}}^{{0}}}{{C}}$ it is more negative, so we can say that it is more exothermic.
The correct answer is option C.
Note:
Kirchhoff’s law gives a relation between the temperature dependence of thermal quantities in a reaction by the difference in heat capacities of the products and reactants. At constant pressure, the heat capacity is the enthalpy divided by change in temperature. Exothermic reactions have enthalpy value always negative whereas for endothermic, the value is positive.
Complete step by step answer:
Standard enthalpy of formation of ammonia at ${{2}}{{{5}}^{{0}}}{{C}}$ its given as ${{ - 92}}{{.2 kJ}}$ which shows this is an exothermic reaction
Here, ${{{C}}_{{p}}}$ each molecule is given and we can calculate the change in heat capacity.
\[{{\Delta }}{{{C}}_{{p}}}{{ = 2}}{{{C}}_{{{p(N}}{{{H}}_{{3}}}{{)}}}}{{ - }}{{{C}}_{{{p(}}{{{N}}_{{2}}}{{)}}}}{{ - 3}}{{{C}}_{{{P(}}{{{H}}_{{2}}}{{)}}}}\]
$ \Rightarrow {{\Delta }}{{{C}}_{{P}}}{{ = 2(35}}{{.1) - (29}}{{.1) - 3(28}}{{.8) J}}{{{K}}^{{{ - 1}}}}{{mo}}{{{l}}^{{{ - 1}}}}$
$ \Rightarrow {{\Delta }}{{{C}}_{{P}}}{{ = - 45}}{{.3 J}}{{{K}}^{{{ - 1}}}}{{mo}}{{{l}}^{{{ - 1}}}}$
We know that at constant pressure,
The change in enthalpy is the difference between the enthalpy of the product and the enthalpy of the reactant.
${{\Delta H = }}{{{H}}_{{p}}}{{ - }}{{{H}}_{{R}}} \to eq1$
We know that ${{H = }}{{{C}}_{{p}}}{{\Delta T}}$ at constant pressure,
So we can write $\Delta {{H = \Delta }}{{{C}}_{{p}}}{{dT}} \to {{eq2}}$
From equation 1 and 2 we can write as ${{\Delta }}{{{H}}_2}{{ - \Delta }}{{{H}}_1}{{ = \Delta }}{{{C}}_{{p}}}{{dT}}$
Here, ${{\Delta }}{{{H}}_{{2}}}$ is the enthalpy at ${100^0}{{C}}$ and ${{\Delta }}{{{H}}_{{1}}}$is the enthalpy change at ${{2}}{{{5}}^{{0}}}{{C}}$
So it can be written as ${{\Delta }}{{{H}}_{{2}}}{{ - ( - 92}}{{.2 \times 1}}{{{0}}^{{3}}}{{) = - 45}}{{.3(}}{{{T}}_{{2}}}{{ - }}{{{T}}_{{1}}}{{)}}$
$ \Rightarrow {{\Delta }}{{{H}}_{{2}}}{{ - ( - 92}}{{.2 \times 1}}{{{0}}^{{3}}}{{) = - 45}}{{.3(100 - 25)}}$
\[ \Rightarrow \] ${{\Delta }}{{{H}}_{{2}}}{{ = - 95600 J/mol}}$
\[ \Rightarrow \] ${{\Delta }}{{{H}}_{{2}}}{{ = - 95}}{{.6 kJ/mol}}$
It is less than the enthalpy change at ${{2}}{{{5}}^{{0}}}{{C}}$ it is more negative, so we can say that it is more exothermic.
The correct answer is option C.
Note:
Kirchhoff’s law gives a relation between the temperature dependence of thermal quantities in a reaction by the difference in heat capacities of the products and reactants. At constant pressure, the heat capacity is the enthalpy divided by change in temperature. Exothermic reactions have enthalpy value always negative whereas for endothermic, the value is positive.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

