
In examination, \[{\text{42% }}\]students failed in mathematics and \[{\text{52% }}\]failed in science. If \[{\text{17% }}\]failed in both the subjects. Find the percentage who passed in both the subjects?
Answer
577.5k+ views
Hint: First let us calculate individual failing of the students in both the subjects from there we can use the logic that
\[{\text{ = 100% - (fail% )}}\], and on using above equation we can obtain our required answer.
Complete step by step answer:
As given that \[{\text{17% }}\]failed in both the subjects, and \[{\text{42% }}\]students failed in mathematics and \[{\text{52% }}\]failed in science.
The number of students that only failed in mathematics\[{\text{ = 42 - 17 = 25% }}\]
The number of students that only failed in science\[{\text{ = 52 - 17 = 35% }}\]
And so the total numbers of failed students only in maths, only in science and both maths and science are
\[
{\text{ = 35 + 25 + 17% }} \\
{\text{ = 77% }} \\
\]
Hence, students passed in both the subjects are
\[
{\text{ = 100% - (fail% )}} \\
{\text{ = 100 - (77)% }} \\
{\text{ = 23% }} \\
\]
Hence, there are 23% of students who passed in both subjects.
Note: We can also proceed with the question using the Venn-diagram method, A Venn diagram also called the primary diagram, set diagram, or logic diagram, is a diagram that shows all possible logical relations between a finite collection of different sets. These diagrams depict elements as points in the plane and sets as regions inside closed curves.
\[{\text{ = 100% - (fail% )}}\], and on using above equation we can obtain our required answer.
Complete step by step answer:
As given that \[{\text{17% }}\]failed in both the subjects, and \[{\text{42% }}\]students failed in mathematics and \[{\text{52% }}\]failed in science.
The number of students that only failed in mathematics\[{\text{ = 42 - 17 = 25% }}\]
The number of students that only failed in science\[{\text{ = 52 - 17 = 35% }}\]
And so the total numbers of failed students only in maths, only in science and both maths and science are
\[
{\text{ = 35 + 25 + 17% }} \\
{\text{ = 77% }} \\
\]
Hence, students passed in both the subjects are
\[
{\text{ = 100% - (fail% )}} \\
{\text{ = 100 - (77)% }} \\
{\text{ = 23% }} \\
\]
Hence, there are 23% of students who passed in both subjects.
Note: We can also proceed with the question using the Venn-diagram method, A Venn diagram also called the primary diagram, set diagram, or logic diagram, is a diagram that shows all possible logical relations between a finite collection of different sets. These diagrams depict elements as points in the plane and sets as regions inside closed curves.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

