Answer

Verified

421.8k+ views

**Hint:**In this question, we will be using the formula of half-angles in trigonometry and using the sides of the triangle we will obtain the unknown sides. Also, we will use the property of altitude to the base in case of isosceles triangle to get the required solution. So, use this concept to reach the solution of the given problem.

**Complete step by step answer:**

Given \[\Delta ABC\] is an isosceles triangle with \[AB = AC\]. Let \[AD\] be the altitude to the base and \[CE\] be the altitude to the lateral side whose length are equal to 10 cm and 12 cm respectively as shown in the below figure:

By applying \[\sin B\] in \[\Delta ABD\] and \[\Delta BCE\], we get

\[

\Rightarrow \sin B = \dfrac{{AD}}{{AB}} = \dfrac{{CE}}{{BC}} \\

\Rightarrow \sin B = \dfrac{{10}}{{AB}} = \dfrac{{12}}{{BC}} \\

\Rightarrow \dfrac{{10}}{{AB}} = \dfrac{{12}}{{BC}} \\

\Rightarrow BC = \dfrac{{12}}{{10}}AB \\

\therefore BC = 1.2AB \\

\]

We know that the altitude to the base divides the angle at where the two equal side lengths meet into two equal angles.

So, \[\angle BAC = \dfrac{1}{2}\angle BAD = \dfrac{1}{2}\angle DAC\]

We know that altitude to the base in an isosceles triangle divides the base in two equal parts.

So, we have \[BC = 2BD = 2DC\]

Now in \[\Delta ABD\] we have

\[

\Rightarrow \sin \dfrac{A}{2} = \dfrac{{BD}}{{AB}} = \dfrac{{\dfrac{{BC}}{2}}}{{AB}} = \dfrac{{\dfrac{{1.2AB}}{2}}}{{AB}} = 0.6{\text{ }}\left[ {\because BC = 1.2AB} \right] \\

\Rightarrow \cos \dfrac{A}{2}{\text{ = }}\sqrt {1 - {{\left( {0.6} \right)}^2}} = 0.8{\text{ }}\left[ {\because \cos \dfrac{A}{2} = \sqrt {1 - {{\sin }^2}\dfrac{A}{2}} } \right] \\

\Rightarrow \tan \dfrac{A}{2}{\text{ = }}\dfrac{{BD}}{{AD}} = \dfrac{{\sin \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}} = \dfrac{{0.6}}{{0.8}} = \dfrac{3}{4} = 0.75 \\

\therefore \dfrac{{BD}}{{AD}} = 0.75 \Rightarrow BD = 10 \times 0.75 = 7.5{\text{ }}\left[ {\because AD = 10} \right] \\

\]

We know that altitude to the base in an isosceles triangle divides the base in two equal parts.

So, \[BC = 2 \times BD = 2 \times 7.5 = 15\]

Therefore, the length of the base is \[BC = 15{\text{cm}}\]

**So, the correct answer is “Option B”.**

**Note:**We have to use a trigonometric formula to solve this question. The formula used is \[\cos \dfrac{A}{2} = \sqrt {1 - {{\sin }^2}\dfrac{A}{2}} \]. Also, we have to use \[\sin A = \dfrac{{{\text{opp side}}}}{{{\text{hypotenuse}}}}\] and \[\tan \dfrac{A}{2} = \dfrac{{\sin \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}}\]. Also, we should remember the property of the isosceles triangle that opposite sides are always equal and opposite angles are also equal.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

The 3 + 3 times 3 3 + 3 What is the right answer and class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How many crores make 10 million class 7 maths CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE