Answer
Verified
420k+ views
Hint: Percentage error is defined as ratio of absolute error to the true value multiplied by 100. When the result involves the multiplication or quotient of two observed quantities, the maximum possible percentage error in the result is equal to the sum of percentage errors in the observed quantities.
Complete step by step solution
We are given that:
$ P=\dfrac{{{a}^{3}}{{b}^{2}}}{cd} $
Percentage error is given by :
$ \dfrac{\Delta P}{P}=3\left( \dfrac{\Delta a}{a}\times 100 \right)+2\left( \dfrac{\Delta b}{b}\times 100 \right)+1\left( \dfrac{\Delta c}{c}\times 100 \right)+\left( \dfrac{\Delta d}{d}\times 100 \right) $
$ =3\times 1+2\times 2+1\times 3+1\times 4 $
$ =3+4+3+4 $
$ =14% $
Additional information
We can derive the formula for calculating percentage error when the result involves the product of powers of observed quantities.
Suppose $ X={{a}^{l}}{{b}^{m}}{{c}^{-n}} $
Let $ \Delta a $ , $ \Delta b $ , $ \Delta c $ are the absolute errors in the measurements of quantities a, b and c $ \Delta X $ is the absolute error in the result.
So,
$ X\pm \Delta X={{\left( a\pm \Delta a \right)}^{l}}{{\left( b\pm \Delta b \right)}^{m}}{{\left( c\pm \Delta c \right)}^{-n}} $
$\Rightarrow X\pm \Delta X={{a}^{l}}{{\left( 1\pm \dfrac{\Delta a}{a} \right)}^{l}}{{b}^{m}}{{\left( 1\pm \dfrac{\Delta b}{b} \right)}^{m}}{{c}^{-n}}{{\left( 1\pm \dfrac{\Delta c}{c} \right)}^{-n}} $
$\Rightarrow X\pm \Delta X={{a}^{l}}{{b}^{m}}{{c}^{-n}}{{\left( 1\pm \dfrac{\Delta a}{a} \right)}^{l}}{{\left( 1\pm \dfrac{\Delta b}{b} \right)}^{m}}{{\left( 1\pm \dfrac{\Delta c}{c} \right)}^{-n}} $
$\Rightarrow \dfrac{X\pm \Delta X}{X}=\dfrac{{{a}^{l}}{{b}^{m}}{{c}^{-n}}}{{{a}^{l}}{{b}^{m}}{{c}^{-n}}}\left( 1\pm \dfrac{l\Delta a}{a} \right)\left( 1\pm \dfrac{m\Delta b}{b} \right)\left( 1\pm \dfrac{n\Delta c}{c} \right) $
$\Rightarrow 1\pm \dfrac{\Delta X}{X}=1\pm \dfrac{m\Delta b}{b}\pm \dfrac{l\Delta a}{a}\pm \dfrac{n\Delta c}{c}+ $ neglected other terms
$ \therefore $ $ \dfrac{\Delta X}{X}=\dfrac{l\Delta a}{a}+\dfrac{m\Delta b}{b}+\dfrac{n\Delta c}{c} $
This is the maximum percentage error that can be calculated by multiplying both sides by 100.
Therefore, maximum percentage error in X
$ \dfrac{\Delta X}{X}\times 100=l\dfrac{\Delta a}{a}\times 100+m\dfrac{\Delta b}{b}\times 100+n\dfrac{\Delta c}{c}\times 100 $
This is the required equation.
Note
Suppose we have
$ X=\dfrac{{{a}^{l}}{{b}^{m}}}{{{c}^{n}}} $
Then maximum percentage error in x axis:
$ \dfrac{\Delta x}{x}\times 100=l\dfrac{\Delta a}{a}\times 100+m\dfrac{\Delta b}{b}\times 100+n\dfrac{\Delta c}{c}\times 100 $
That is, maximum percentage error in X
$ =l $ time maximum percentage error in $ a+m $ times maximum percentage error in $ b+n $ times maximum percentage error in c.
Complete step by step solution
We are given that:
$ P=\dfrac{{{a}^{3}}{{b}^{2}}}{cd} $
Percentage error is given by :
$ \dfrac{\Delta P}{P}=3\left( \dfrac{\Delta a}{a}\times 100 \right)+2\left( \dfrac{\Delta b}{b}\times 100 \right)+1\left( \dfrac{\Delta c}{c}\times 100 \right)+\left( \dfrac{\Delta d}{d}\times 100 \right) $
$ =3\times 1+2\times 2+1\times 3+1\times 4 $
$ =3+4+3+4 $
$ =14% $
Additional information
We can derive the formula for calculating percentage error when the result involves the product of powers of observed quantities.
Suppose $ X={{a}^{l}}{{b}^{m}}{{c}^{-n}} $
Let $ \Delta a $ , $ \Delta b $ , $ \Delta c $ are the absolute errors in the measurements of quantities a, b and c $ \Delta X $ is the absolute error in the result.
So,
$ X\pm \Delta X={{\left( a\pm \Delta a \right)}^{l}}{{\left( b\pm \Delta b \right)}^{m}}{{\left( c\pm \Delta c \right)}^{-n}} $
$\Rightarrow X\pm \Delta X={{a}^{l}}{{\left( 1\pm \dfrac{\Delta a}{a} \right)}^{l}}{{b}^{m}}{{\left( 1\pm \dfrac{\Delta b}{b} \right)}^{m}}{{c}^{-n}}{{\left( 1\pm \dfrac{\Delta c}{c} \right)}^{-n}} $
$\Rightarrow X\pm \Delta X={{a}^{l}}{{b}^{m}}{{c}^{-n}}{{\left( 1\pm \dfrac{\Delta a}{a} \right)}^{l}}{{\left( 1\pm \dfrac{\Delta b}{b} \right)}^{m}}{{\left( 1\pm \dfrac{\Delta c}{c} \right)}^{-n}} $
$\Rightarrow \dfrac{X\pm \Delta X}{X}=\dfrac{{{a}^{l}}{{b}^{m}}{{c}^{-n}}}{{{a}^{l}}{{b}^{m}}{{c}^{-n}}}\left( 1\pm \dfrac{l\Delta a}{a} \right)\left( 1\pm \dfrac{m\Delta b}{b} \right)\left( 1\pm \dfrac{n\Delta c}{c} \right) $
$\Rightarrow 1\pm \dfrac{\Delta X}{X}=1\pm \dfrac{m\Delta b}{b}\pm \dfrac{l\Delta a}{a}\pm \dfrac{n\Delta c}{c}+ $ neglected other terms
$ \therefore $ $ \dfrac{\Delta X}{X}=\dfrac{l\Delta a}{a}+\dfrac{m\Delta b}{b}+\dfrac{n\Delta c}{c} $
This is the maximum percentage error that can be calculated by multiplying both sides by 100.
Therefore, maximum percentage error in X
$ \dfrac{\Delta X}{X}\times 100=l\dfrac{\Delta a}{a}\times 100+m\dfrac{\Delta b}{b}\times 100+n\dfrac{\Delta c}{c}\times 100 $
This is the required equation.
Note
Suppose we have
$ X=\dfrac{{{a}^{l}}{{b}^{m}}}{{{c}^{n}}} $
Then maximum percentage error in x axis:
$ \dfrac{\Delta x}{x}\times 100=l\dfrac{\Delta a}{a}\times 100+m\dfrac{\Delta b}{b}\times 100+n\dfrac{\Delta c}{c}\times 100 $
That is, maximum percentage error in X
$ =l $ time maximum percentage error in $ a+m $ times maximum percentage error in $ b+n $ times maximum percentage error in c.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE