
In an A.P. the sum of first ten terms is$210$ and the difference between the first and last term is$36$.Find the first term in the A.P.
$
A.{\text{ }}2 \\
B.{\text{ }}3 \\
C.{\text{ }}4 \\
D.{\text{ }}5 \\
$
Answer
606.3k+ views
Hint- Obtain the equations using given information and use known formulas of Arithmetic Progression , clearly sum of first n terms of AP formula will be used here.
Let${S_n}$ denote the sum of $n$ terms.
We know that,
${S_n} = \dfrac{n}{2}\left( {a + {a_n}} \right)$, where $a$ is the first term and ${a_n}$ is the last term.
Now, we have given that the sum of the first ten terms is $210$.
Therefore, the number of terms is $10$.
$
\Rightarrow {S_n} = \dfrac{{10}}{2}\left( {a + {a_n}} \right) \\
\Rightarrow 210 = 5\left( {a + {a_n}} \right) \\
\Rightarrow \dfrac{{210}}{5} = \left( {a + {a_n}} \right) \\
\Rightarrow 42 = a + {a_n} - - - - \left( i \right) \\
$
Also, the difference between the first and last term is $36$.
$36 = {a_n} - a - - - - \left( {ii} \right)$
Solving $\left( i \right)$ and $\left( {ii} \right)$ equations simultaneously we get,
${a_n} = 39$
Putting the value of ${a_n}$ in equation $\left( i \right)$ we get,
$a = 3$.
Hence the first term is $3.$
Note- Whenever we face such types of questions the key concept is that we should write what is given to us. Then write the formula of sum of series in an AP and then put values in the formula and thus we get the answer.
Let${S_n}$ denote the sum of $n$ terms.
We know that,
${S_n} = \dfrac{n}{2}\left( {a + {a_n}} \right)$, where $a$ is the first term and ${a_n}$ is the last term.
Now, we have given that the sum of the first ten terms is $210$.
Therefore, the number of terms is $10$.
$
\Rightarrow {S_n} = \dfrac{{10}}{2}\left( {a + {a_n}} \right) \\
\Rightarrow 210 = 5\left( {a + {a_n}} \right) \\
\Rightarrow \dfrac{{210}}{5} = \left( {a + {a_n}} \right) \\
\Rightarrow 42 = a + {a_n} - - - - \left( i \right) \\
$
Also, the difference between the first and last term is $36$.
$36 = {a_n} - a - - - - \left( {ii} \right)$
Solving $\left( i \right)$ and $\left( {ii} \right)$ equations simultaneously we get,
${a_n} = 39$
Putting the value of ${a_n}$ in equation $\left( i \right)$ we get,
$a = 3$.
Hence the first term is $3.$
Note- Whenever we face such types of questions the key concept is that we should write what is given to us. Then write the formula of sum of series in an AP and then put values in the formula and thus we get the answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

