
In an A.P, the first term is 2 and the sum of first five terms is 5, then the ${\text{3}}{{\text{1}}^{st}}$term is:
$
{\text{a}}{\text{. 13}} \\
{\text{b}}{\text{. 17}} \\
{\text{c}}{\text{. - 13}} \\
{\text{d}}{\text{. }}\dfrac{{27}}{2} \\
{\text{e}}{\text{. - }}\dfrac{{27}}{2} \\
$
Answer
608.4k+ views
Hint: - ${n^{th}}$term of an A.P is given as$\left( {{a_n} = {a_1} + \left( {n - 1} \right)d} \right)$, (where d is the common difference)
Given data:
First term of an A.P$\left( {{a_1}} \right) = 2$……………… (1)
Sum of first five terms $\left( {{S_5}} \right) = 5$……………… (2)
Then we have to find out the value of ${\text{3}}{{\text{1}}^{st}}$term.
Now, we know that the sum of an A.P is
${{\text{S}}_n} = \dfrac{n}{2}\left( {2{a_1} + \left( {n - 1} \right)d} \right)$, (where d is the common difference)
So, ${{\text{S}}_5} = \dfrac{5}{2}\left( {2{a_1} + \left( {5 - 1} \right)d} \right)$
Now from equation (1) and (2) we have
$
{{\text{S}}_5} = \dfrac{5}{2}\left( {2{a_1} + \left( {5 - 1} \right)d} \right) \\
\Rightarrow 5 = \dfrac{5}{2}\left( {2 \times 2 + 4d} \right) \\
\Rightarrow 2 = 4 + 4d \\
\Rightarrow d = \dfrac{{2 - 4}}{4} = \dfrac{{ - 2}}{4} = \dfrac{{ - 1}}{2} \\
$
Now, we have to find out the value of ${\text{3}}{{\text{1}}^{st}}$term.
As we know that the ${n^{th}}$term of an A.P is given as$\left( {{a_n} = {a_1} + \left( {n - 1} \right)d} \right)$
$ \Rightarrow {31^{th}}$Term of the A.P is
$ \Rightarrow {a_{31}} = 2 + \left( {31 - 1} \right)\left( {\dfrac{{ - 1}}{2}} \right) = \left( {2 - 15} \right) = - 13$
So, option (c) is correct.
Note: - In such types of questions the key concept we have to remember is that always remember all the general formulas of A.P which is stated above, then first find out the value of common difference using the formula of sum of an A.P then using the formula of ${n^{th}}$term of an A.P calculate the value of ${31^{th}}$term which is the required answer.
Given data:
First term of an A.P$\left( {{a_1}} \right) = 2$……………… (1)
Sum of first five terms $\left( {{S_5}} \right) = 5$……………… (2)
Then we have to find out the value of ${\text{3}}{{\text{1}}^{st}}$term.
Now, we know that the sum of an A.P is
${{\text{S}}_n} = \dfrac{n}{2}\left( {2{a_1} + \left( {n - 1} \right)d} \right)$, (where d is the common difference)
So, ${{\text{S}}_5} = \dfrac{5}{2}\left( {2{a_1} + \left( {5 - 1} \right)d} \right)$
Now from equation (1) and (2) we have
$
{{\text{S}}_5} = \dfrac{5}{2}\left( {2{a_1} + \left( {5 - 1} \right)d} \right) \\
\Rightarrow 5 = \dfrac{5}{2}\left( {2 \times 2 + 4d} \right) \\
\Rightarrow 2 = 4 + 4d \\
\Rightarrow d = \dfrac{{2 - 4}}{4} = \dfrac{{ - 2}}{4} = \dfrac{{ - 1}}{2} \\
$
Now, we have to find out the value of ${\text{3}}{{\text{1}}^{st}}$term.
As we know that the ${n^{th}}$term of an A.P is given as$\left( {{a_n} = {a_1} + \left( {n - 1} \right)d} \right)$
$ \Rightarrow {31^{th}}$Term of the A.P is
$ \Rightarrow {a_{31}} = 2 + \left( {31 - 1} \right)\left( {\dfrac{{ - 1}}{2}} \right) = \left( {2 - 15} \right) = - 13$
So, option (c) is correct.
Note: - In such types of questions the key concept we have to remember is that always remember all the general formulas of A.P which is stated above, then first find out the value of common difference using the formula of sum of an A.P then using the formula of ${n^{th}}$term of an A.P calculate the value of ${31^{th}}$term which is the required answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

