Answer
Verified
453.6k+ views
Hint: Adiabatic expansion in thermodynamics refers to a process in which the volume is increasing and there is no heat transferred into or out the system. It is not necessary that temperature will be constant.
Complete step by step answer:
We know that an adiabatic process in thermodynamics is a process in which there is no transfer of heat into or out the system. So, if we apply the first law of thermodynamics in chemistry the relation we obtain between $\Delta E,\Delta Q$and $W$is $\Delta E = \Delta Q + W$.
Where $\Delta E$is the internal energy of the system, $\Delta Q$is the change in heat and $W$is the work done. In adiabatic process $\Delta Q = 0$, so $W = \Delta E$.
So, the correct answer is Option B .
Additional Information:
In thermodynamics an adiabatic process is denoted by $P{V^\gamma } = $constant. Where $\gamma = \dfrac{{{C_P}}}{{{C_V}}}$. In adiabatic expansion the volume of the system increases. We can obtain an adiabatic process only when we can surround the system with a thermally insulated material which will not allow any heat to flow outside or inside the system. If we observe practically it is nearly impossible to build a system which is truly adiabatic. Isothermal process is a thermodynamic process in which $\Delta T = 0$.
Note:
The value of internal energy of a thermodynamic process can be calculated by $\Delta E = n{C_V}\Delta T$. The magnitude of the work done by an isothermal in expansion as well in compression is always greater than the magnitude of the work done in an adiabatic process. If an ideal gas is adiabatically expanded in vacuum, the process becomes isothermal
Complete step by step answer:
We know that an adiabatic process in thermodynamics is a process in which there is no transfer of heat into or out the system. So, if we apply the first law of thermodynamics in chemistry the relation we obtain between $\Delta E,\Delta Q$and $W$is $\Delta E = \Delta Q + W$.
Where $\Delta E$is the internal energy of the system, $\Delta Q$is the change in heat and $W$is the work done. In adiabatic process $\Delta Q = 0$, so $W = \Delta E$.
So, the correct answer is Option B .
Additional Information:
In thermodynamics an adiabatic process is denoted by $P{V^\gamma } = $constant. Where $\gamma = \dfrac{{{C_P}}}{{{C_V}}}$. In adiabatic expansion the volume of the system increases. We can obtain an adiabatic process only when we can surround the system with a thermally insulated material which will not allow any heat to flow outside or inside the system. If we observe practically it is nearly impossible to build a system which is truly adiabatic. Isothermal process is a thermodynamic process in which $\Delta T = 0$.
Note:
The value of internal energy of a thermodynamic process can be calculated by $\Delta E = n{C_V}\Delta T$. The magnitude of the work done by an isothermal in expansion as well in compression is always greater than the magnitude of the work done in an adiabatic process. If an ideal gas is adiabatically expanded in vacuum, the process becomes isothermal
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE