
In a vector diagram shown In figure where $\overrightarrow R $ is the resultant of vector $\overrightarrow A $ and $\overrightarrow B $ . if $R = \dfrac{B}{{\sqrt {} 2}}$ , what is the value of angle $\theta $?
A.${30^\theta }$
B.${45^\theta }$
C.${60^\theta }$
D.${75^\theta }$
Answer
569.4k+ views
Hint-The resultant of two vectors $\overrightarrow A $ and $\overrightarrow B $ is denoted by $\overrightarrow R $ whose value is $R = \dfrac{B}{{\sqrt 2 }}$ we need to find the angle made by these two vectors. This can be found by analysing the given figure. We know that sine of angle is given by the ratio of opposite sides by hypotenuse. Here, the opposite side is B and the adjacent side is R.
That is,
$\sin \theta = \dfrac{R}{B}$
Using this we can find the angle $\theta $ .
Step by step solution:
It is given that two vectors $\overrightarrow A $ and $\overrightarrow B $ have a resultant vector $\overrightarrow R $. The value of resultant vector is
given as ,
$R = \dfrac{B}{{\sqrt 2 }}$
We are asked to find the angle $\theta $ shown in the figure.
If we analyse the given triangle, we can see that the side opposite to the angle $\theta $ is $R$ and the side adjacent is $A$ and hypotenuse is $B$ .
Therefore,
Adjacent side = $A$
Opposite side = $R$
Hypotenuse = $B$
We know that sine of an angle in a triangle can be calculated as the ratio of opposite sides to the hypotenuse .
$\sin \theta = \dfrac{{opposite\,side}}{{hypotenuse}}$
Substituting for opposite side and hypotenuse , we get
$\sin \theta = \dfrac{R}{B}$ …………..(1)
Now we need to find the value of $\dfrac{R}{B}$ .To find this value we can use the information given in the question. The value of $R$ is given as $R = \dfrac{B}{{\sqrt 2 }}$ . on rearranging this equation, we get
$\dfrac{R}{B} = \dfrac{1}{{\sqrt 2 }}$
Let us substitute this value in the equation (1). Then we get,
$\sin \theta = \dfrac{1}{{\sqrt 2 }}$
We need to find the value of $\theta $.
$ \Rightarrow \theta = {\sin ^{ - 1}}\dfrac{1}{{\sqrt 2 }}$
We know that $\sin \,{45^ \circ } = \dfrac{1}{{\sqrt 2 }}$ .
Therefore , ${\sin ^{ - 1}}\dfrac{1}{{\sqrt 2 }} = {45^ \circ }$
So,
$\theta = {45^ \circ }$
Hence the correct answer is option B.
Note:This question can also be done using an alternative method. The resultant vector $A$ and $B$is given by the equation.
$R = \sqrt {{A^2} + {B^2} + 2AB\cos \theta } $
On squaring and substituting value of $R$ we get,
$\dfrac{{{B^2}}}{2} = {A^2} + {B^2} + 2AB\cos \theta $ ……………...(1)
Since $A$ is perpendicular to $R$ which is $A + B$ we can write
On expanding the dot product we get, ${A^2} + AB\cos \theta = 0$
From this we get $A = - B\cos \theta $. On substituting this value in equation 1 and solving for $\theta $ we get ,
$\theta = {45^ \circ }$
That is,
$\sin \theta = \dfrac{R}{B}$
Using this we can find the angle $\theta $ .
Step by step solution:
It is given that two vectors $\overrightarrow A $ and $\overrightarrow B $ have a resultant vector $\overrightarrow R $. The value of resultant vector is
given as ,
$R = \dfrac{B}{{\sqrt 2 }}$
We are asked to find the angle $\theta $ shown in the figure.
If we analyse the given triangle, we can see that the side opposite to the angle $\theta $ is $R$ and the side adjacent is $A$ and hypotenuse is $B$ .
Therefore,
Adjacent side = $A$
Opposite side = $R$
Hypotenuse = $B$
We know that sine of an angle in a triangle can be calculated as the ratio of opposite sides to the hypotenuse .
$\sin \theta = \dfrac{{opposite\,side}}{{hypotenuse}}$
Substituting for opposite side and hypotenuse , we get
$\sin \theta = \dfrac{R}{B}$ …………..(1)
Now we need to find the value of $\dfrac{R}{B}$ .To find this value we can use the information given in the question. The value of $R$ is given as $R = \dfrac{B}{{\sqrt 2 }}$ . on rearranging this equation, we get
$\dfrac{R}{B} = \dfrac{1}{{\sqrt 2 }}$
Let us substitute this value in the equation (1). Then we get,
$\sin \theta = \dfrac{1}{{\sqrt 2 }}$
We need to find the value of $\theta $.
$ \Rightarrow \theta = {\sin ^{ - 1}}\dfrac{1}{{\sqrt 2 }}$
We know that $\sin \,{45^ \circ } = \dfrac{1}{{\sqrt 2 }}$ .
Therefore , ${\sin ^{ - 1}}\dfrac{1}{{\sqrt 2 }} = {45^ \circ }$
So,
$\theta = {45^ \circ }$
Hence the correct answer is option B.
Note:This question can also be done using an alternative method. The resultant vector $A$ and $B$is given by the equation.
$R = \sqrt {{A^2} + {B^2} + 2AB\cos \theta } $
On squaring and substituting value of $R$ we get,
$\dfrac{{{B^2}}}{2} = {A^2} + {B^2} + 2AB\cos \theta $ ……………...(1)
Since $A$ is perpendicular to $R$ which is $A + B$ we can write
On expanding the dot product we get, ${A^2} + AB\cos \theta = 0$
From this we get $A = - B\cos \theta $. On substituting this value in equation 1 and solving for $\theta $ we get ,
$\theta = {45^ \circ }$
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

