
In a triangle ABC if $\tan \left( \dfrac{A}{2} \right)=\dfrac{5}{6}$ and $\tan \left( \dfrac{B}{2} \right)=\dfrac{20}{37}$ , then sides a, b, c of the triangle are in?
(a) A.P.
(b) G.P.
(C) H.P.
(d) None of these
Answer
516k+ views
Hint:Use half angle formulae of tan function in terms of sides of triangle. It is given as
\[\begin{align}
& \tan \dfrac{A}{2}=\sqrt{\dfrac{\left( s-b \right)\left( s-c \right)}{s\left( s-a \right)}} \\
& \tan \dfrac{B}{2}=\sqrt{\dfrac{\left( s-c \right)\left( s-a \right)}{s\left( s-b \right)}} \\
& \tan \dfrac{C}{2}=\sqrt{\dfrac{\left( s-a \right)\left( s-b \right)}{s\left( s-c \right)}} \\
\end{align}\]
where a, b, c are the sides of the triangle and the value of s is given as $\dfrac{a+b+c}{2}$ and A, B, C are the angles of the triangle.
From two equations with the given relations and solve them to get relations in (a, b, c).
Complete step-by-step answer:
Here we have a triangle ABC, with $\tan \left( \dfrac{A}{2} \right)=\dfrac{5}{6}$ and $\tan \left( \dfrac{B}{2} \right)=\dfrac{20}{37}$ , then we need to determine the relation among a, b and c
We know the half angle formulae for triangle for tan functions as:
\[\begin{align}
& \tan \dfrac{A}{2}=\sqrt{\dfrac{\left( s-b \right)\left( s-c \right)}{s\left( s-a \right)}}......\left( i \right) \\
& \tan \dfrac{B}{2}=\sqrt{\dfrac{\left( s-c \right)\left( s-a \right)}{s\left( s-b \right)}}......\left( ii \right) \\
\end{align}\]
Where the values of s = $\dfrac{a+b+c}{2}$ and a, b, c are the sides of the triangle, with opposite angles as A, B, C.
Now, as we know the values of $\tan \dfrac{A}{2}$ and $\tan \dfrac{B}{2}$ from the problem, so let us multiply equation (i) and (ii). So, we get
\[\tan \dfrac{A}{2}\tan \dfrac{B}{2}=\sqrt{\dfrac{\left( s-b \right)\left( s-c \right)}{s\left( s-a \right)}}\times \sqrt{\dfrac{\left( s-c \right)\left( s-a \right)}{s\left( s-b \right)}}\]
Now, we can cancel out (s – a) and (s – b) from numerator and denominator so we get
$\dfrac{5}{6}\times \dfrac{20}{37}=\sqrt{\dfrac{{{\left( s-c \right)}^{2}}}{{{s}^{2}}}}=\dfrac{s-c}{s}$
Now we know, the value of s is given as $\dfrac{a+b+c}{2}$. So, we get
$\begin{align}
& \dfrac{50}{111}=\dfrac{\dfrac{a+b+c}{2}-c}{\left( \dfrac{a+b+c}{2} \right)} \\
& \dfrac{50}{111}=\dfrac{\dfrac{\left( a+b+c-2c \right)}{2}}{\left( \dfrac{a+b+c}{2} \right)} \\
& \dfrac{50}{111}=\dfrac{a+b-c}{a+b+c} \\
\end{align}$
Now, on cross multiplying the above equation, we get
50a + 50b + 50c = 111a + 111b – 111c
61a + 61b – 161c = 0………..(iii)
Similarly, let us divide the equation (i) and (ii) and put values of $\tan \dfrac{A}{2}$ and $\tan \dfrac{B}{2}$ .So, we get
\[\begin{align}
& \dfrac{\tan \dfrac{A}{2}}{\tan \dfrac{B}{2}}=\dfrac{\sqrt{\dfrac{\left( s-b \right)\left( s-c \right)}{s\left( s-a \right)}}}{\sqrt{\dfrac{\left( s-c \right)\left( s-a \right)}{s\left( s-b \right)}}} \\
& \dfrac{\tan \dfrac{A}{2}}{\tan \dfrac{B}{2}}=\dfrac{\sqrt{\dfrac{s-b}{s-a}}}{\sqrt{\dfrac{s-a}{s-b}}}=\sqrt{\dfrac{s-b}{s-a}}\times \sqrt{\dfrac{s-b}{s-a}} \\
& \dfrac{\dfrac{5}{6}}{\dfrac{20}{37}}=\sqrt{\dfrac{{{\left( s-b \right)}^{2}}}{{{\left( s-a \right)}^{2}}}} \\
& \dfrac{5}{6}\times \dfrac{37}{20}=\dfrac{s-b}{s-a} \\
& \dfrac{37}{24}=\dfrac{s-b}{s-a} \\
\end{align}\]
Now we can put value of s as \[\dfrac{a+b+c}{2}\] and hence, we get
$\begin{align}
& \dfrac{37}{24}=\dfrac{\dfrac{a+b+c}{2}-b}{\dfrac{a+b+c}{2}-a}=\dfrac{\dfrac{a+b+c-2b}{2}}{\dfrac{a+b+c-2a}{2}} \\
& \dfrac{37}{24}=\dfrac{a-b+c}{-a+b+c} \\
\end{align}$
On cross multiplying the above equation, we get
$\begin{align}
& -37a+37b+37c=24a-24b+24c \\
& -37a-24a+37b+24b+37c-24c=0 \\
& -61a+61b+13c=0...........\left( iv \right) \\
\end{align}$
Now, on adding the equation (iii) and (iv), we get
\[\begin{align}
& \underline{\begin{array}{*{35}{l}}
{} & \text{ }61a & + & 61b & \text{ }- & 161c & = & 0 \\
{} & -61a & + & 61b & \text{ }+ & 13c & = & 0 \\
+ & {} & {} & {} & {} & {} & {} & {} \\
\end{array}} \\
& \begin{array}{*{35}{l}}
{} & \text{ }0 & + & 122b & - & 148c & = & 0 \\
\end{array} \\
\end{align}\]
$b=\dfrac{148c}{122}=\dfrac{74c}{61}.......\left( v \right)$
On subtracting the equation (iii) and (iv), we get
\[\begin{align}
& \underline{\begin{array}{*{35}{l}}
{} & \text{ }61a & + & 61b & - & 161c & = & 0 \\
{} & -61a & + & 61b & + & 13c & = & 0 \\
- & {} & {} & {} & {} & {} & {} & {} \\
\end{array}} \\
& \begin{array}{*{35}{l}}
{} & 122a & + & \text{ }0b & - & 174c & = & 0 \\
\end{array} \\
\end{align}\]
$a=\dfrac{174c}{122}=\dfrac{87c}{61}......\left( vi \right)$
Now we can get value of $\dfrac{c}{61}$ from equation (v) and (vi) as
$\begin{align}
& \dfrac{c}{61}=\dfrac{b}{74}=\dfrac{a}{87} \\
& \Rightarrow \dfrac{a}{87}=\dfrac{b}{74}=\dfrac{c}{61} \\
\end{align}$
Now, let us suppose the value of all the above equal fractions be ‘k’. So, we get
$\dfrac{a}{87}=\dfrac{b}{74}=\dfrac{c}{61}=k$
Now, we get values of a, b and c in terms of k as
a = 87k, b = 74k, c = 61k
Now, we get that the terms
a, b, c i.e. 87k, 74k, 61k, has a common difference of ‘-7k’. $\left( 74k-87k=61k-74k=-7k \right)$ . It means a, b, c are in A.P.
So, option (a) is the correct answer.
Note: Another approach for the question would be that we can calculate $\cos A$ and $\cos B$ by using the formula
$\cos \theta =\dfrac{1-{{\tan }^{2}}\dfrac{\theta }{2}}{1+{{\tan }^{2}}\dfrac{\theta }{2}}$
And hence, apply the cosine formula with the given sides, cosine formula given as
$\cos \theta =\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$
Where $\theta $ is the angle between sides of length ‘b’ and ‘c’. So, get $\cos A$ and $\cos B$ and hence, use the above relations.
Direct applying identities with the chapter “properties of triangles” always makes the question flexible and less time taking, as done with this question in solution
Take care with the positions of terms involved with the identities mentioned in the solution. One may go wrong with these parts as well.
\[\begin{align}
& \tan \dfrac{A}{2}=\sqrt{\dfrac{\left( s-b \right)\left( s-c \right)}{s\left( s-a \right)}} \\
& \tan \dfrac{B}{2}=\sqrt{\dfrac{\left( s-c \right)\left( s-a \right)}{s\left( s-b \right)}} \\
& \tan \dfrac{C}{2}=\sqrt{\dfrac{\left( s-a \right)\left( s-b \right)}{s\left( s-c \right)}} \\
\end{align}\]
where a, b, c are the sides of the triangle and the value of s is given as $\dfrac{a+b+c}{2}$ and A, B, C are the angles of the triangle.
From two equations with the given relations and solve them to get relations in (a, b, c).
Complete step-by-step answer:
Here we have a triangle ABC, with $\tan \left( \dfrac{A}{2} \right)=\dfrac{5}{6}$ and $\tan \left( \dfrac{B}{2} \right)=\dfrac{20}{37}$ , then we need to determine the relation among a, b and c

We know the half angle formulae for triangle for tan functions as:
\[\begin{align}
& \tan \dfrac{A}{2}=\sqrt{\dfrac{\left( s-b \right)\left( s-c \right)}{s\left( s-a \right)}}......\left( i \right) \\
& \tan \dfrac{B}{2}=\sqrt{\dfrac{\left( s-c \right)\left( s-a \right)}{s\left( s-b \right)}}......\left( ii \right) \\
\end{align}\]
Where the values of s = $\dfrac{a+b+c}{2}$ and a, b, c are the sides of the triangle, with opposite angles as A, B, C.
Now, as we know the values of $\tan \dfrac{A}{2}$ and $\tan \dfrac{B}{2}$ from the problem, so let us multiply equation (i) and (ii). So, we get
\[\tan \dfrac{A}{2}\tan \dfrac{B}{2}=\sqrt{\dfrac{\left( s-b \right)\left( s-c \right)}{s\left( s-a \right)}}\times \sqrt{\dfrac{\left( s-c \right)\left( s-a \right)}{s\left( s-b \right)}}\]
Now, we can cancel out (s – a) and (s – b) from numerator and denominator so we get
$\dfrac{5}{6}\times \dfrac{20}{37}=\sqrt{\dfrac{{{\left( s-c \right)}^{2}}}{{{s}^{2}}}}=\dfrac{s-c}{s}$
Now we know, the value of s is given as $\dfrac{a+b+c}{2}$. So, we get
$\begin{align}
& \dfrac{50}{111}=\dfrac{\dfrac{a+b+c}{2}-c}{\left( \dfrac{a+b+c}{2} \right)} \\
& \dfrac{50}{111}=\dfrac{\dfrac{\left( a+b+c-2c \right)}{2}}{\left( \dfrac{a+b+c}{2} \right)} \\
& \dfrac{50}{111}=\dfrac{a+b-c}{a+b+c} \\
\end{align}$
Now, on cross multiplying the above equation, we get
50a + 50b + 50c = 111a + 111b – 111c
61a + 61b – 161c = 0………..(iii)
Similarly, let us divide the equation (i) and (ii) and put values of $\tan \dfrac{A}{2}$ and $\tan \dfrac{B}{2}$ .So, we get
\[\begin{align}
& \dfrac{\tan \dfrac{A}{2}}{\tan \dfrac{B}{2}}=\dfrac{\sqrt{\dfrac{\left( s-b \right)\left( s-c \right)}{s\left( s-a \right)}}}{\sqrt{\dfrac{\left( s-c \right)\left( s-a \right)}{s\left( s-b \right)}}} \\
& \dfrac{\tan \dfrac{A}{2}}{\tan \dfrac{B}{2}}=\dfrac{\sqrt{\dfrac{s-b}{s-a}}}{\sqrt{\dfrac{s-a}{s-b}}}=\sqrt{\dfrac{s-b}{s-a}}\times \sqrt{\dfrac{s-b}{s-a}} \\
& \dfrac{\dfrac{5}{6}}{\dfrac{20}{37}}=\sqrt{\dfrac{{{\left( s-b \right)}^{2}}}{{{\left( s-a \right)}^{2}}}} \\
& \dfrac{5}{6}\times \dfrac{37}{20}=\dfrac{s-b}{s-a} \\
& \dfrac{37}{24}=\dfrac{s-b}{s-a} \\
\end{align}\]
Now we can put value of s as \[\dfrac{a+b+c}{2}\] and hence, we get
$\begin{align}
& \dfrac{37}{24}=\dfrac{\dfrac{a+b+c}{2}-b}{\dfrac{a+b+c}{2}-a}=\dfrac{\dfrac{a+b+c-2b}{2}}{\dfrac{a+b+c-2a}{2}} \\
& \dfrac{37}{24}=\dfrac{a-b+c}{-a+b+c} \\
\end{align}$
On cross multiplying the above equation, we get
$\begin{align}
& -37a+37b+37c=24a-24b+24c \\
& -37a-24a+37b+24b+37c-24c=0 \\
& -61a+61b+13c=0...........\left( iv \right) \\
\end{align}$
Now, on adding the equation (iii) and (iv), we get
\[\begin{align}
& \underline{\begin{array}{*{35}{l}}
{} & \text{ }61a & + & 61b & \text{ }- & 161c & = & 0 \\
{} & -61a & + & 61b & \text{ }+ & 13c & = & 0 \\
+ & {} & {} & {} & {} & {} & {} & {} \\
\end{array}} \\
& \begin{array}{*{35}{l}}
{} & \text{ }0 & + & 122b & - & 148c & = & 0 \\
\end{array} \\
\end{align}\]
$b=\dfrac{148c}{122}=\dfrac{74c}{61}.......\left( v \right)$
On subtracting the equation (iii) and (iv), we get
\[\begin{align}
& \underline{\begin{array}{*{35}{l}}
{} & \text{ }61a & + & 61b & - & 161c & = & 0 \\
{} & -61a & + & 61b & + & 13c & = & 0 \\
- & {} & {} & {} & {} & {} & {} & {} \\
\end{array}} \\
& \begin{array}{*{35}{l}}
{} & 122a & + & \text{ }0b & - & 174c & = & 0 \\
\end{array} \\
\end{align}\]
$a=\dfrac{174c}{122}=\dfrac{87c}{61}......\left( vi \right)$
Now we can get value of $\dfrac{c}{61}$ from equation (v) and (vi) as
$\begin{align}
& \dfrac{c}{61}=\dfrac{b}{74}=\dfrac{a}{87} \\
& \Rightarrow \dfrac{a}{87}=\dfrac{b}{74}=\dfrac{c}{61} \\
\end{align}$
Now, let us suppose the value of all the above equal fractions be ‘k’. So, we get
$\dfrac{a}{87}=\dfrac{b}{74}=\dfrac{c}{61}=k$
Now, we get values of a, b and c in terms of k as
a = 87k, b = 74k, c = 61k
Now, we get that the terms
a, b, c i.e. 87k, 74k, 61k, has a common difference of ‘-7k’. $\left( 74k-87k=61k-74k=-7k \right)$ . It means a, b, c are in A.P.
So, option (a) is the correct answer.
Note: Another approach for the question would be that we can calculate $\cos A$ and $\cos B$ by using the formula
$\cos \theta =\dfrac{1-{{\tan }^{2}}\dfrac{\theta }{2}}{1+{{\tan }^{2}}\dfrac{\theta }{2}}$
And hence, apply the cosine formula with the given sides, cosine formula given as
$\cos \theta =\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$
Where $\theta $ is the angle between sides of length ‘b’ and ‘c’. So, get $\cos A$ and $\cos B$ and hence, use the above relations.
Direct applying identities with the chapter “properties of triangles” always makes the question flexible and less time taking, as done with this question in solution
Take care with the positions of terms involved with the identities mentioned in the solution. One may go wrong with these parts as well.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
