
In a set of n things 'r' things are similar and remaining are different. Then the number of circular arrangements of those n things is
\[\begin{align}
& A.\left( n-1 \right)!r! \\
& B.\dfrac{\left( n-1 \right)!}{r!} \\
& C.\dfrac{\left( n-1 \right)!}{r} \\
& D.r\left( n-1 \right)! \\
\end{align}\]
Answer
511.2k+ views
Hint: In this question, we need to find a number of ways n things can be arranged such that r things are similar and remaining are different. For this, we will use the derivative of permutation. We will use the following derivations.
(1) The total number of circular permutations of n different things taken all at a time is (n-1)!.
(2) If any item is repeated then we divide the total arrangements by that repeated item.
Complete step-by-step solution
Here, we have to find the number of circular arrangements of n things out of which r things are similar and remaining is different.
We know that the total number of circular permutations of n different things taken all at a time is (n-1)!.
So the total number of circular arrangements will be (n-1)!.
Now out of these n things, r things are similar, so we need to divide total arrangements by repeated things.
Since r things are similar, so the number of arrangements of r items will be r!
Now we know that, when we have repeated items, then we divide total arrangements by repeated items to get the final answer.
Here, total circular arrangements are (n-1)! and repeated arrangements are r!
So our final circular arrangements will be equal to $\dfrac{\left( n-1 \right)!}{r!}$.
Hence, $\dfrac{\left( n-1 \right)!}{r!}$ is our final answer.
Therefore, option B is the correct answer.
Note: Students can make the mistake of taking permutation repeated items as “r” but we need to take permutation as r! Make sure to divide the repeated thing. If we were given r things of one type repeated and p things of another type repeated then, we will divide total arrangements by $p!\times r!$ Hence total circular arrangements would be $\dfrac{n!}{p!r!}$.
(1) The total number of circular permutations of n different things taken all at a time is (n-1)!.
(2) If any item is repeated then we divide the total arrangements by that repeated item.
Complete step-by-step solution
Here, we have to find the number of circular arrangements of n things out of which r things are similar and remaining is different.
We know that the total number of circular permutations of n different things taken all at a time is (n-1)!.
So the total number of circular arrangements will be (n-1)!.
Now out of these n things, r things are similar, so we need to divide total arrangements by repeated things.
Since r things are similar, so the number of arrangements of r items will be r!
Now we know that, when we have repeated items, then we divide total arrangements by repeated items to get the final answer.
Here, total circular arrangements are (n-1)! and repeated arrangements are r!
So our final circular arrangements will be equal to $\dfrac{\left( n-1 \right)!}{r!}$.
Hence, $\dfrac{\left( n-1 \right)!}{r!}$ is our final answer.
Therefore, option B is the correct answer.
Note: Students can make the mistake of taking permutation repeated items as “r” but we need to take permutation as r! Make sure to divide the repeated thing. If we were given r things of one type repeated and p things of another type repeated then, we will divide total arrangements by $p!\times r!$ Hence total circular arrangements would be $\dfrac{n!}{p!r!}$.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
