
In a resonance tube experiment two consecutive resonances are observed when the length of the air columns are $16\,cm\,and\,49\,cm$ . If the frequency of the tuning fork used is $500\,Hz$ , the velocity of sound in air is:
A. $310\,m{s^{ - 1}}$
B. $320\,m{s^{ - 1}}$
C. $330\,m{s^{ - 1}}$
D. $340\,m{s^{ - 1}}$
Answer
410.4k+ views
Hint:In order to this question, to know the velocity of sound in the air, we should apply the formula of resonance with both the given lengths of air columns separately. Now, we can calculate the velocity of sound in air.
Complete step by step answer:
Let the lengths of the air columns are $16\,cm\,and\,49\,cm$ be ${l_1}\,and\,{l_2}$ respectively. And also the end correction of the resonance be $e$. So,
${l_1} + e = \dfrac{v}{{4f}}$ ….eq(i)
Here, $v$ is the velocity of sound in the air and $f$ is the frequency.
Again,
${l_2} + e = \dfrac{{3v}}{{4f}}$ ….eq(ii)
So, by subtracting eq(i) from eq(ii)-
${l_2} - {l_1} = \dfrac{{3v}}{{4f}} - \dfrac{v}{{4f}} \\
\Rightarrow {l_2} - {l_1} = \dfrac{{2v}}{{4f}} \\
\Rightarrow {l_2} - {l_1}= \dfrac{v}{{2f}} \\
\Rightarrow v = 2f({l_2} - {l_1}) \\ $
So, $f$ is given in the question itself i.e.. $500\,Hz$ .
$\Rightarrow v = 2 \times 500(49 - 16) \\
\Rightarrow v = 1000(33) \\
\therefore v = 33000\,cm{s^{ - 1}}\,or\,330\,m{s^{ - 1}} $
Therefore, the velocity of the sound in air is $330\,m{s^{ - 1}}$.
Hence, the correct option is C.
Note:The length $l$ of a pipe or tube (air column) determines its resonance frequencies. Given the requirement of a node at the closed end and an antinode at the open end, only a limited number of wavelengths can be accommodated in the tube.
Complete step by step answer:
Let the lengths of the air columns are $16\,cm\,and\,49\,cm$ be ${l_1}\,and\,{l_2}$ respectively. And also the end correction of the resonance be $e$. So,
${l_1} + e = \dfrac{v}{{4f}}$ ….eq(i)
Here, $v$ is the velocity of sound in the air and $f$ is the frequency.
Again,
${l_2} + e = \dfrac{{3v}}{{4f}}$ ….eq(ii)
So, by subtracting eq(i) from eq(ii)-
${l_2} - {l_1} = \dfrac{{3v}}{{4f}} - \dfrac{v}{{4f}} \\
\Rightarrow {l_2} - {l_1} = \dfrac{{2v}}{{4f}} \\
\Rightarrow {l_2} - {l_1}= \dfrac{v}{{2f}} \\
\Rightarrow v = 2f({l_2} - {l_1}) \\ $
So, $f$ is given in the question itself i.e.. $500\,Hz$ .
$\Rightarrow v = 2 \times 500(49 - 16) \\
\Rightarrow v = 1000(33) \\
\therefore v = 33000\,cm{s^{ - 1}}\,or\,330\,m{s^{ - 1}} $
Therefore, the velocity of the sound in air is $330\,m{s^{ - 1}}$.
Hence, the correct option is C.
Note:The length $l$ of a pipe or tube (air column) determines its resonance frequencies. Given the requirement of a node at the closed end and an antinode at the open end, only a limited number of wavelengths can be accommodated in the tube.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
