
In a resonance tube experiment two consecutive resonances are observed when the length of the air columns are $16\,cm\,and\,49\,cm$ . If the frequency of the tuning fork used is $500\,Hz$ , the velocity of sound in air is:
A. $310\,m{s^{ - 1}}$
B. $320\,m{s^{ - 1}}$
C. $330\,m{s^{ - 1}}$
D. $340\,m{s^{ - 1}}$
Answer
505.2k+ views
Hint:In order to this question, to know the velocity of sound in the air, we should apply the formula of resonance with both the given lengths of air columns separately. Now, we can calculate the velocity of sound in air.
Complete step by step answer:
Let the lengths of the air columns are $16\,cm\,and\,49\,cm$ be ${l_1}\,and\,{l_2}$ respectively. And also the end correction of the resonance be $e$. So,
${l_1} + e = \dfrac{v}{{4f}}$ ….eq(i)
Here, $v$ is the velocity of sound in the air and $f$ is the frequency.
Again,
${l_2} + e = \dfrac{{3v}}{{4f}}$ ….eq(ii)
So, by subtracting eq(i) from eq(ii)-
${l_2} - {l_1} = \dfrac{{3v}}{{4f}} - \dfrac{v}{{4f}} \\
\Rightarrow {l_2} - {l_1} = \dfrac{{2v}}{{4f}} \\
\Rightarrow {l_2} - {l_1}= \dfrac{v}{{2f}} \\
\Rightarrow v = 2f({l_2} - {l_1}) \\ $
So, $f$ is given in the question itself i.e.. $500\,Hz$ .
$\Rightarrow v = 2 \times 500(49 - 16) \\
\Rightarrow v = 1000(33) \\
\therefore v = 33000\,cm{s^{ - 1}}\,or\,330\,m{s^{ - 1}} $
Therefore, the velocity of the sound in air is $330\,m{s^{ - 1}}$.
Hence, the correct option is C.
Note:The length $l$ of a pipe or tube (air column) determines its resonance frequencies. Given the requirement of a node at the closed end and an antinode at the open end, only a limited number of wavelengths can be accommodated in the tube.
Complete step by step answer:
Let the lengths of the air columns are $16\,cm\,and\,49\,cm$ be ${l_1}\,and\,{l_2}$ respectively. And also the end correction of the resonance be $e$. So,
${l_1} + e = \dfrac{v}{{4f}}$ ….eq(i)
Here, $v$ is the velocity of sound in the air and $f$ is the frequency.
Again,
${l_2} + e = \dfrac{{3v}}{{4f}}$ ….eq(ii)
So, by subtracting eq(i) from eq(ii)-
${l_2} - {l_1} = \dfrac{{3v}}{{4f}} - \dfrac{v}{{4f}} \\
\Rightarrow {l_2} - {l_1} = \dfrac{{2v}}{{4f}} \\
\Rightarrow {l_2} - {l_1}= \dfrac{v}{{2f}} \\
\Rightarrow v = 2f({l_2} - {l_1}) \\ $
So, $f$ is given in the question itself i.e.. $500\,Hz$ .
$\Rightarrow v = 2 \times 500(49 - 16) \\
\Rightarrow v = 1000(33) \\
\therefore v = 33000\,cm{s^{ - 1}}\,or\,330\,m{s^{ - 1}} $
Therefore, the velocity of the sound in air is $330\,m{s^{ - 1}}$.
Hence, the correct option is C.
Note:The length $l$ of a pipe or tube (air column) determines its resonance frequencies. Given the requirement of a node at the closed end and an antinode at the open end, only a limited number of wavelengths can be accommodated in the tube.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

