
In a parabola, Prove that the length of a focal chord which is inclined at ${30^0}$ to the axis is four times the length of the latus-rectum.
Answer
608.7k+ views
Hint: - Use equation of parabola in polar form, \[\dfrac{{2a}}{r} = 1 - \cos \theta \]
Equation of parabola in polar form is
\[\dfrac{{2a}}{r} = 1 - \cos \theta ..........................\left( b \right)\]
Where $r$ is the distance between focus and parametric point.
As we know latus rectum of parabola is \[{\text{ = 4a}}\]
Let PP’ be the focal chord and it is given that it is inclined at ${30^0}$ then parametric angles of P and P’ are ${30^0}$and $\pi + {30^0}$ respectively.
Let S be the focus which divide the focal chord into two equal parts
I.e. \[{\text{PS + SP' = PP'}}\]…………………(c)
$ \Rightarrow r = PS = SP'$
From equation (b)
\[\begin{gathered}
\Rightarrow \dfrac{{2a}}{{PS}} = 1 - \cos {30^0} \\
\Rightarrow PS = \dfrac{{2a}}{{1 - \cos {{30}^0}}}....................\left( 1 \right) \\
\end{gathered} \]
From equation (b)
\[\begin{gathered}
\Rightarrow \dfrac{{2a}}{{SP'}} = 1 - \cos \left( {\pi + {{30}^0}} \right) = 1 + \cos {30^0} \\
\Rightarrow SP' = \dfrac{{2a}}{{1 + \cos {{30}^0}}}................\left( 2 \right) \\
\end{gathered} \]
Now add equation (1) and (2) and from equation (c)
\[\begin{gathered}
\Rightarrow {\text{PS + SP' = PP' = }}\dfrac{{2a}}{{1 - \cos {{30}^0}}} + \dfrac{{2a}}{{1 + \cos {{30}^0}}} \\
\Rightarrow {\text{PP' = }}\dfrac{{4a}}{{1 - {{\cos }^2}{{30}^0}}} = \dfrac{{4a}}{{1 - \dfrac{3}{4}}} = 16a \\
\end{gathered} \]
So, length of focal chord \[{\text{PP}}' = 16a = 4 \times 4a{\text{ = 4}} \times {\text{Latus - Rectum}}\]
Hence Proved.
Note: - In such types of questions the key concept we have to remember is that always remember the equation of parabola in polar form and its parametric angles which is stated above and also remember the value of latus rectum of the parabola, then use equation (c) to get the required length of the focal chord which is four times the latus rectum.
Equation of parabola in polar form is
\[\dfrac{{2a}}{r} = 1 - \cos \theta ..........................\left( b \right)\]
Where $r$ is the distance between focus and parametric point.
As we know latus rectum of parabola is \[{\text{ = 4a}}\]
Let PP’ be the focal chord and it is given that it is inclined at ${30^0}$ then parametric angles of P and P’ are ${30^0}$and $\pi + {30^0}$ respectively.
Let S be the focus which divide the focal chord into two equal parts
I.e. \[{\text{PS + SP' = PP'}}\]…………………(c)
$ \Rightarrow r = PS = SP'$
From equation (b)
\[\begin{gathered}
\Rightarrow \dfrac{{2a}}{{PS}} = 1 - \cos {30^0} \\
\Rightarrow PS = \dfrac{{2a}}{{1 - \cos {{30}^0}}}....................\left( 1 \right) \\
\end{gathered} \]
From equation (b)
\[\begin{gathered}
\Rightarrow \dfrac{{2a}}{{SP'}} = 1 - \cos \left( {\pi + {{30}^0}} \right) = 1 + \cos {30^0} \\
\Rightarrow SP' = \dfrac{{2a}}{{1 + \cos {{30}^0}}}................\left( 2 \right) \\
\end{gathered} \]
Now add equation (1) and (2) and from equation (c)
\[\begin{gathered}
\Rightarrow {\text{PS + SP' = PP' = }}\dfrac{{2a}}{{1 - \cos {{30}^0}}} + \dfrac{{2a}}{{1 + \cos {{30}^0}}} \\
\Rightarrow {\text{PP' = }}\dfrac{{4a}}{{1 - {{\cos }^2}{{30}^0}}} = \dfrac{{4a}}{{1 - \dfrac{3}{4}}} = 16a \\
\end{gathered} \]
So, length of focal chord \[{\text{PP}}' = 16a = 4 \times 4a{\text{ = 4}} \times {\text{Latus - Rectum}}\]
Hence Proved.
Note: - In such types of questions the key concept we have to remember is that always remember the equation of parabola in polar form and its parametric angles which is stated above and also remember the value of latus rectum of the parabola, then use equation (c) to get the required length of the focal chord which is four times the latus rectum.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

