
In a parabola, Prove that the length of a focal chord which is inclined at ${30^0}$ to the axis is four times the length of the latus-rectum.
Answer
512.7k+ views
Hint: - Use equation of parabola in polar form, \[\dfrac{{2a}}{r} = 1 - \cos \theta \]
Equation of parabola in polar form is
\[\dfrac{{2a}}{r} = 1 - \cos \theta ..........................\left( b \right)\]
Where $r$ is the distance between focus and parametric point.
As we know latus rectum of parabola is \[{\text{ = 4a}}\]
Let PP’ be the focal chord and it is given that it is inclined at ${30^0}$ then parametric angles of P and P’ are ${30^0}$and $\pi + {30^0}$ respectively.
Let S be the focus which divide the focal chord into two equal parts
I.e. \[{\text{PS + SP' = PP'}}\]…………………(c)
$ \Rightarrow r = PS = SP'$
From equation (b)
\[\begin{gathered}
\Rightarrow \dfrac{{2a}}{{PS}} = 1 - \cos {30^0} \\
\Rightarrow PS = \dfrac{{2a}}{{1 - \cos {{30}^0}}}....................\left( 1 \right) \\
\end{gathered} \]
From equation (b)
\[\begin{gathered}
\Rightarrow \dfrac{{2a}}{{SP'}} = 1 - \cos \left( {\pi + {{30}^0}} \right) = 1 + \cos {30^0} \\
\Rightarrow SP' = \dfrac{{2a}}{{1 + \cos {{30}^0}}}................\left( 2 \right) \\
\end{gathered} \]
Now add equation (1) and (2) and from equation (c)
\[\begin{gathered}
\Rightarrow {\text{PS + SP' = PP' = }}\dfrac{{2a}}{{1 - \cos {{30}^0}}} + \dfrac{{2a}}{{1 + \cos {{30}^0}}} \\
\Rightarrow {\text{PP' = }}\dfrac{{4a}}{{1 - {{\cos }^2}{{30}^0}}} = \dfrac{{4a}}{{1 - \dfrac{3}{4}}} = 16a \\
\end{gathered} \]
So, length of focal chord \[{\text{PP}}' = 16a = 4 \times 4a{\text{ = 4}} \times {\text{Latus - Rectum}}\]
Hence Proved.
Note: - In such types of questions the key concept we have to remember is that always remember the equation of parabola in polar form and its parametric angles which is stated above and also remember the value of latus rectum of the parabola, then use equation (c) to get the required length of the focal chord which is four times the latus rectum.
Equation of parabola in polar form is
\[\dfrac{{2a}}{r} = 1 - \cos \theta ..........................\left( b \right)\]
Where $r$ is the distance between focus and parametric point.
As we know latus rectum of parabola is \[{\text{ = 4a}}\]
Let PP’ be the focal chord and it is given that it is inclined at ${30^0}$ then parametric angles of P and P’ are ${30^0}$and $\pi + {30^0}$ respectively.
Let S be the focus which divide the focal chord into two equal parts
I.e. \[{\text{PS + SP' = PP'}}\]…………………(c)
$ \Rightarrow r = PS = SP'$
From equation (b)
\[\begin{gathered}
\Rightarrow \dfrac{{2a}}{{PS}} = 1 - \cos {30^0} \\
\Rightarrow PS = \dfrac{{2a}}{{1 - \cos {{30}^0}}}....................\left( 1 \right) \\
\end{gathered} \]
From equation (b)
\[\begin{gathered}
\Rightarrow \dfrac{{2a}}{{SP'}} = 1 - \cos \left( {\pi + {{30}^0}} \right) = 1 + \cos {30^0} \\
\Rightarrow SP' = \dfrac{{2a}}{{1 + \cos {{30}^0}}}................\left( 2 \right) \\
\end{gathered} \]
Now add equation (1) and (2) and from equation (c)
\[\begin{gathered}
\Rightarrow {\text{PS + SP' = PP' = }}\dfrac{{2a}}{{1 - \cos {{30}^0}}} + \dfrac{{2a}}{{1 + \cos {{30}^0}}} \\
\Rightarrow {\text{PP' = }}\dfrac{{4a}}{{1 - {{\cos }^2}{{30}^0}}} = \dfrac{{4a}}{{1 - \dfrac{3}{4}}} = 16a \\
\end{gathered} \]
So, length of focal chord \[{\text{PP}}' = 16a = 4 \times 4a{\text{ = 4}} \times {\text{Latus - Rectum}}\]
Hence Proved.
Note: - In such types of questions the key concept we have to remember is that always remember the equation of parabola in polar form and its parametric angles which is stated above and also remember the value of latus rectum of the parabola, then use equation (c) to get the required length of the focal chord which is four times the latus rectum.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
The combining capacity of an element is known as i class 11 chemistry CBSE

State the laws of reflection of light

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Find the image of the point 38 about the line x+3y class 11 maths CBSE

Distinguish between Mitosis and Meiosis class 11 biology CBSE

What is the difference between homolytic and heterolytic class 11 chemistry CBSE
