
In a double slit experiment, the distance between the slits is $3mm$ and the slits are $2m$ away from the screen. Two interference patterns can be seen on the screen due to light with wavelength $480nm$, and the other due to light with wavelength $600nm$. What is the separation on the screen between the fifth bright fringes of the two interference patterns?
Answer
571.8k+ views
Hint-Thomas Young carried out his double slit experiment to see the interference produced by the electrons. Those electrons are passing through the double slit. This double slit experiment is used to demonstrate the wave-particle duality nature of electrons and other particles. Both dark and bright fringes are shown on the screen.
Formula used:
\[y = \dfrac{{n\lambda D}}{d}\]
Where
\[y\]=separation between the fringes
\[n\]= order of the fringe
\[D\]=distance between the slit and screen
\[d\]= distance between the two slits
Complete step by step answer:
(i) Consider the beam of electrons is passing through slits. Those slits are separated by 3mm. After passing the slit, the electrons approach the screen which is 2m away from the slit. Those electrons made two interference patterns due to the light on wavelength 480nm and 600nm respectively.
(ii) The interferences occur on the both sides of the central fringe. The bright and dark fringes are occurring one by one on both sides. To find the distance between those fringes, we have to find the distance on both sides and have to find the difference between them. That is ${y_2} - {y_1}$
(iii) Therefore, ${y_1} = \dfrac{{n{\lambda _1}D}}{d}$and ${y_2} = \dfrac{{n{\lambda _2}D}}{d}$\[\]
${y_1} = \dfrac{{5 \times 480 \times {{10}^{ - 9}} \times 2}}{{3 \times {{10}^{ - 3}}}}$
$ \rightarrow {y_1} = 1.6 \times {10^{ - 3}}m$
And ${y_2} = \dfrac{{5 \times 600 \times {{10}^{ - 9}} \times 2}}{{3 \times {{10}^{ - 3}}}}$
$ \rightarrow {y_2} = 2 \times {10^{ - 3}}m$
(iv)The separation between the fifth bright order fringes is,
${y_2} - {y_1} = 2 \times {10^{ - 3}} - 1.6 \times {10^{ - 3}}$
$ \rightarrow 0.4 \times {10^{ - 3}}m$
(v) Therefore the separation between the fifth order bright fringes is $0.4 \times {10^{ - 3}}m$
Note: The electron beam from the source is passing through the slits and produces the pattern of interference fringes. The central bright fringe is followed by bright and dark fringes on its both sides. The electron beams make the interference pattern by interfering with themselves and this interference pattern explains the wave nature of the electrons.
Formula used:
\[y = \dfrac{{n\lambda D}}{d}\]
Where
\[y\]=separation between the fringes
\[n\]= order of the fringe
\[D\]=distance between the slit and screen
\[d\]= distance between the two slits
Complete step by step answer:
(i) Consider the beam of electrons is passing through slits. Those slits are separated by 3mm. After passing the slit, the electrons approach the screen which is 2m away from the slit. Those electrons made two interference patterns due to the light on wavelength 480nm and 600nm respectively.
(ii) The interferences occur on the both sides of the central fringe. The bright and dark fringes are occurring one by one on both sides. To find the distance between those fringes, we have to find the distance on both sides and have to find the difference between them. That is ${y_2} - {y_1}$
(iii) Therefore, ${y_1} = \dfrac{{n{\lambda _1}D}}{d}$and ${y_2} = \dfrac{{n{\lambda _2}D}}{d}$\[\]
${y_1} = \dfrac{{5 \times 480 \times {{10}^{ - 9}} \times 2}}{{3 \times {{10}^{ - 3}}}}$
$ \rightarrow {y_1} = 1.6 \times {10^{ - 3}}m$
And ${y_2} = \dfrac{{5 \times 600 \times {{10}^{ - 9}} \times 2}}{{3 \times {{10}^{ - 3}}}}$
$ \rightarrow {y_2} = 2 \times {10^{ - 3}}m$
(iv)The separation between the fifth bright order fringes is,
${y_2} - {y_1} = 2 \times {10^{ - 3}} - 1.6 \times {10^{ - 3}}$
$ \rightarrow 0.4 \times {10^{ - 3}}m$
(v) Therefore the separation between the fifth order bright fringes is $0.4 \times {10^{ - 3}}m$
Note: The electron beam from the source is passing through the slits and produces the pattern of interference fringes. The central bright fringe is followed by bright and dark fringes on its both sides. The electron beams make the interference pattern by interfering with themselves and this interference pattern explains the wave nature of the electrons.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

December 10th of 1948 is an important day in the history class 12 sst CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

