Answer
Verified
421.2k+ views
Hint: The radius of a triangle is equal to $\dfrac{\Delta }{s}$. Where $'\Delta '$ is the area of the triangle and ‘s’ is the semi- perimeter of the triangle. We can find the area by taking the product of base and height and then dividing it by 2. We can find the semi-perimeter by adding up all the side lengths and then dividing it by 2. Find $'\Delta '$ and ‘s’ of triangles and put in the formula to get the inradius.
Complete step-by-step answer:
Given triangle ABC is right angled at B.
\[\begin{align}
& Area\ of\ a\ triangle\ is\ =\dfrac{1}{2}\times \left( base \right)\times \left( height \right) \\
& \Rightarrow \Delta =\dfrac{1}{2}\times \left( AB \right)\times \left( BC \right) \\
& Semiperimeter\ of\ \Delta ABC=\dfrac{Perimeter\ of\ \Delta ABC}{2} \\
& \Rightarrow s=\dfrac{AB+BC+AC}{2} \\
& \Rightarrow s=\dfrac{a+b+c}{2}.......\left( 1 \right) \\
\end{align}\]
Now, let us put calculated values of $'\Delta '$ and ‘s’ in the formula of inradius;
$\begin{align}
& r=\dfrac{\Delta }{s} \\
& \Rightarrow r=\dfrac{\left( \dfrac{1}{2}\times AB\times BC \right)}{\left( \dfrac{AB+BC+CA}{2} \right)} \\
\end{align}$
Multiplying both numerator and denominator by 2, we will get,
$\Rightarrow r=\dfrac{AB\times BC}{AB+BC+AC}$
Putting AB = c, BC = a and AC = b, we will get;
$\begin{align}
& \Rightarrow r=\dfrac{c\times a}{c+a+b} \\
& \Rightarrow r=\dfrac{ac}{a+b+c}...........\left( 2 \right) \\
\end{align}$
Subtracting equation (1) from equation (2), we will get,
$\Rightarrow r-s=\dfrac{ac}{a+b+c}-\dfrac{a+b+c}{2}$
Taking LCM and subtracting, we will get,
$\Rightarrow r-s=\dfrac{2ac-{{\left( a+b+c \right)}^{2}}}{2\left( a+b+c \right)}$
We know ${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca$.
Using these identity, we will get,
$\begin{align}
& \Rightarrow r-s=\dfrac{2ac-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca \right)}{2\left( a+b+c \right)} \\
& \Rightarrow r-s=\dfrac{{2ac}-{{a}^{2}}-{{b}^{2}}-{{c}^{2}}-2ab-2bc-{2ca}}{2\left( a+b+c \right)} \\
\end{align}$
Taking “-1” common, we will get,
$\Rightarrow r-s=\dfrac{-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc \right)}{2\left( a+b+c \right)}$
As $\Delta ABC$ is right angled at B,
$\begin{align}
& {{\left( hypotenuse \right)}^{2}}={{\left( side\ 1 \right)}^{2}}+{{\left( side\ 2 \right)}^{2}} \\
& \Rightarrow {{b}^{2}}={{a}^{2}}+{{c}^{2}} \\
\end{align}$
By replacing ${{a}^{2}}+{{c}^{2}}$with ${{b}^{2}}$, we will get,
$\Rightarrow r-s=\dfrac{-\left( {{b}^{2}}+{{b}^{2}}+2ab+2bc \right)}{2\left( a+b+c \right)}$
Multiplying both sides of equation by “-1”, we will get,
$\begin{align}
& \Rightarrow -1\times \left( r-s \right)=\left( -1 \right)\times \left[ \dfrac{-\left( 2{{b}^{2}}+2ab+2bc \right)}{2\left( a+b+c \right)} \right] \\
& \Rightarrow s-r=\dfrac{2{{b}^{2}}+2ab+2bc}{2\left( a+b+c \right)} \\
\end{align}$
Taking “2b” common from the numerator in RHS, we will get,
\[\Rightarrow s-r=\dfrac{2b\left( b+a+c \right)}{2\left( a+b+c \right)}\]
Dividing both numerator and denominator by 2(a + b + c), we will get,
$\begin{align}
& \Rightarrow s-r=b \\
& \Rightarrow r=s-b \\
\end{align}$
Putting $s=\dfrac{a+b+c}{2}$, we will get,
$r=\left( \dfrac{a+b+c}{2} \right)-\dfrac{b}{1}$
Taking LCM and subtracting, we will get,
$\begin{align}
& r=\dfrac{a+b+c-2b}{2} \\
& \Rightarrow r=\dfrac{a-b+c}{2} \\
\end{align}$
Now, putting a = BC, b = AC, c = AB, we will get,
$\begin{align}
& \Rightarrow r=\dfrac{BC-AC+AB}{2} \\
& \Rightarrow r=\dfrac{AB+BC-AC}{2} \\
\end{align}$
Hence, the inradius of $\Delta ABC$ is equal to $\dfrac{AB+BC-AC}{2}$ and option (A) is the correct answer.
Note: inradius of a triangle is the radius of the circle inscribed in the triangle. If you don’t remember the formula for inradius. Calculate inradius using geometry. But this will be a very lengthy method, so try to memorize the formula.
Complete step-by-step answer:
Given triangle ABC is right angled at B.
\[\begin{align}
& Area\ of\ a\ triangle\ is\ =\dfrac{1}{2}\times \left( base \right)\times \left( height \right) \\
& \Rightarrow \Delta =\dfrac{1}{2}\times \left( AB \right)\times \left( BC \right) \\
& Semiperimeter\ of\ \Delta ABC=\dfrac{Perimeter\ of\ \Delta ABC}{2} \\
& \Rightarrow s=\dfrac{AB+BC+AC}{2} \\
& \Rightarrow s=\dfrac{a+b+c}{2}.......\left( 1 \right) \\
\end{align}\]
Now, let us put calculated values of $'\Delta '$ and ‘s’ in the formula of inradius;
$\begin{align}
& r=\dfrac{\Delta }{s} \\
& \Rightarrow r=\dfrac{\left( \dfrac{1}{2}\times AB\times BC \right)}{\left( \dfrac{AB+BC+CA}{2} \right)} \\
\end{align}$
Multiplying both numerator and denominator by 2, we will get,
$\Rightarrow r=\dfrac{AB\times BC}{AB+BC+AC}$
Putting AB = c, BC = a and AC = b, we will get;
$\begin{align}
& \Rightarrow r=\dfrac{c\times a}{c+a+b} \\
& \Rightarrow r=\dfrac{ac}{a+b+c}...........\left( 2 \right) \\
\end{align}$
Subtracting equation (1) from equation (2), we will get,
$\Rightarrow r-s=\dfrac{ac}{a+b+c}-\dfrac{a+b+c}{2}$
Taking LCM and subtracting, we will get,
$\Rightarrow r-s=\dfrac{2ac-{{\left( a+b+c \right)}^{2}}}{2\left( a+b+c \right)}$
We know ${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca$.
Using these identity, we will get,
$\begin{align}
& \Rightarrow r-s=\dfrac{2ac-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca \right)}{2\left( a+b+c \right)} \\
& \Rightarrow r-s=\dfrac{{2ac}-{{a}^{2}}-{{b}^{2}}-{{c}^{2}}-2ab-2bc-{2ca}}{2\left( a+b+c \right)} \\
\end{align}$
Taking “-1” common, we will get,
$\Rightarrow r-s=\dfrac{-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc \right)}{2\left( a+b+c \right)}$
As $\Delta ABC$ is right angled at B,
$\begin{align}
& {{\left( hypotenuse \right)}^{2}}={{\left( side\ 1 \right)}^{2}}+{{\left( side\ 2 \right)}^{2}} \\
& \Rightarrow {{b}^{2}}={{a}^{2}}+{{c}^{2}} \\
\end{align}$
By replacing ${{a}^{2}}+{{c}^{2}}$with ${{b}^{2}}$, we will get,
$\Rightarrow r-s=\dfrac{-\left( {{b}^{2}}+{{b}^{2}}+2ab+2bc \right)}{2\left( a+b+c \right)}$
Multiplying both sides of equation by “-1”, we will get,
$\begin{align}
& \Rightarrow -1\times \left( r-s \right)=\left( -1 \right)\times \left[ \dfrac{-\left( 2{{b}^{2}}+2ab+2bc \right)}{2\left( a+b+c \right)} \right] \\
& \Rightarrow s-r=\dfrac{2{{b}^{2}}+2ab+2bc}{2\left( a+b+c \right)} \\
\end{align}$
Taking “2b” common from the numerator in RHS, we will get,
\[\Rightarrow s-r=\dfrac{2b\left( b+a+c \right)}{2\left( a+b+c \right)}\]
Dividing both numerator and denominator by 2(a + b + c), we will get,
$\begin{align}
& \Rightarrow s-r=b \\
& \Rightarrow r=s-b \\
\end{align}$
Putting $s=\dfrac{a+b+c}{2}$, we will get,
$r=\left( \dfrac{a+b+c}{2} \right)-\dfrac{b}{1}$
Taking LCM and subtracting, we will get,
$\begin{align}
& r=\dfrac{a+b+c-2b}{2} \\
& \Rightarrow r=\dfrac{a-b+c}{2} \\
\end{align}$
Now, putting a = BC, b = AC, c = AB, we will get,
$\begin{align}
& \Rightarrow r=\dfrac{BC-AC+AB}{2} \\
& \Rightarrow r=\dfrac{AB+BC-AC}{2} \\
\end{align}$
Hence, the inradius of $\Delta ABC$ is equal to $\dfrac{AB+BC-AC}{2}$ and option (A) is the correct answer.
Note: inradius of a triangle is the radius of the circle inscribed in the triangle. If you don’t remember the formula for inradius. Calculate inradius using geometry. But this will be a very lengthy method, so try to memorize the formula.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Onam is the main festival of which state A Karnataka class 7 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Who was the founder of muslim league A Mohmmad ali class 10 social science CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers