
In a cyclic process, the amount of heat given to a system is equal to
A. Net increase in internal energy
B. Net work done by the system
C. Net decrease in internal energy
D. Net change in volume
E. Net change in pressure
Answer
577.5k+ views
Hint: According to the first law of thermodynamics, the amount of heat energy given to the system equals the summation of total change in internal energy and net work done by the system.
$\Delta H = \Delta U + \Delta W$
But in a cyclic process, the total change in the internal energy of the system is equal to zero.
Complete step-by-step answer:
We know that the heat energy given to the system is converted into the work done and also to increase the internal energy of the system, given by the formula
$\Delta H = \Delta U + \Delta W$
Where,
$\Delta H$= Amount of heat supplied
$\Delta U$= Change in internal energy
$\Delta W$= Net work done
In a cyclic process, the initial and the final state of the system are the same therefore the net change in the internal energy of the system is zero.
$\therefore $$\Delta H = \Delta U + \Delta W$
On putting the value of $\Delta U = 0$we get
$\Delta H = 0 + \Delta W$
$\Delta H = \Delta W$
Therefore the heat supplied to the system becomes equal to the net work done by the system on the surrounding.
Hence the correct option is B.
Note: The amount of heat energy supplied to the system is also equal to the area enclosed under the P-V graph in a thermodynamic cycle. If the cycle is clockwise then work done by the system and if it is counterclockwise then the work done on the system by the surrounding. The work done by the system is considered positive and work done on the system is considered negative.
$\Delta H = \Delta U + \Delta W$
But in a cyclic process, the total change in the internal energy of the system is equal to zero.
Complete step-by-step answer:
We know that the heat energy given to the system is converted into the work done and also to increase the internal energy of the system, given by the formula
$\Delta H = \Delta U + \Delta W$
Where,
$\Delta H$= Amount of heat supplied
$\Delta U$= Change in internal energy
$\Delta W$= Net work done
In a cyclic process, the initial and the final state of the system are the same therefore the net change in the internal energy of the system is zero.
$\therefore $$\Delta H = \Delta U + \Delta W$
On putting the value of $\Delta U = 0$we get
$\Delta H = 0 + \Delta W$
$\Delta H = \Delta W$
Therefore the heat supplied to the system becomes equal to the net work done by the system on the surrounding.
Hence the correct option is B.
Note: The amount of heat energy supplied to the system is also equal to the area enclosed under the P-V graph in a thermodynamic cycle. If the cycle is clockwise then work done by the system and if it is counterclockwise then the work done on the system by the surrounding. The work done by the system is considered positive and work done on the system is considered negative.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

