
In a college, 60 students enrolled in chemistry, 40 in physics, 30 in biology, 15 in chemistry and physics, 10 in physics and biology, 5 in biology and chemistry. No one enrolled in all the three. Find how many are enrolled in at least one of the subjects.
Answer
519.9k+ views
Hint: In this question, find the number of students enrolled in at least one of the subjects first work out the sum of students with all three subjects, with two subjects only and with only one subject. Second, work out the no of students enrolled in a single subject only and finally work out the different values of each subject.
Complete step-by-step solution -
Let C, P and B are the students enrolled in the subjects Chemistry, Physics and Biology respectively.
Number of students enrolled in the subject Chemistry = $n(C)=60$
Number of students enrolled in the subject Physics = $n(P)=40$
Number of students enrolled in the subject Biology = $n(B)=30$
Number of students enrolled in the subjects chemistry and Physics = $n(C\bigcap P)=15$
Number of students enrolled in the subjects Physics and Biology = $n(P\bigcap B)=10$
Number of students enrolled in the subjects Biology and chemistry = $n(B\bigcap C)=5$
Number of students enrolled in the subjects Physics Biology and Chemistry = $n(P\bigcap B\bigcap C)=0$
Therefore, the number of students enrolled in at least one of the subjects = 35 + 15 + 20 + 10 + 5 + 15 = 100.
Note: Alternatively, you could substitute all the number of the students in the subjects Chemistry, Physics and Biology directly into the formula $n\left( C\bigcup P\bigcup B \right)=n(C)+n(P)+n(B)-n(C\bigcap P)-n(P\bigcap B)-n(C\bigcap B)+n(C\bigcap P\bigcap B)$
Complete step-by-step solution -
Let C, P and B are the students enrolled in the subjects Chemistry, Physics and Biology respectively.
Number of students enrolled in the subject Chemistry = $n(C)=60$
Number of students enrolled in the subject Physics = $n(P)=40$
Number of students enrolled in the subject Biology = $n(B)=30$
Number of students enrolled in the subjects chemistry and Physics = $n(C\bigcap P)=15$
Number of students enrolled in the subjects Physics and Biology = $n(P\bigcap B)=10$
Number of students enrolled in the subjects Biology and chemistry = $n(B\bigcap C)=5$
Number of students enrolled in the subjects Physics Biology and Chemistry = $n(P\bigcap B\bigcap C)=0$

Therefore, the number of students enrolled in at least one of the subjects = 35 + 15 + 20 + 10 + 5 + 15 = 100.
Note: Alternatively, you could substitute all the number of the students in the subjects Chemistry, Physics and Biology directly into the formula $n\left( C\bigcup P\bigcup B \right)=n(C)+n(P)+n(B)-n(C\bigcap P)-n(P\bigcap B)-n(C\bigcap B)+n(C\bigcap P\bigcap B)$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
