
In a $20ml$ $0.4{\text{M}} - {\text{HA}}$ solution, $80ml$ water is added. Assuming volume to be additive, the $pH$ off final solution is $\left( {{{\text{K}}_{\text{a}}}{\text{ of HA}} = 4 \times {{10}^{ - 7}},\log 2 = 0.3} \right)$
A) $5.30$
B) $4.30$
C)$3.50$
D) $3.70$
Answer
564.3k+ views
Hint:We must remember that the concentration of hydrogen ion in the solution is termed as $pH$ of the solution. It is the general way to determine the strength of base/acid. The $pH$ value ranges from $0 - 14$. For acid the value of $pH$ is $ < 7$, the $pH$ value base is $ > 7$, for the neutral molecule the value of $pH$ is equal to $0$.
Complete step by step answer:
The molarity of the acid and base titration is calculated using the relation.
${M_1}{V_1} = {M_1}{V_2}$
Where,
The molarity of the acidic solution is ${M_1}$.
The volume of the acidic solution is ${V_1}$.
The molarity of the basic solution is ${M_2}$.
The volume of the basic is ${V_2}$.
Given,
The volume of water is $80ml$
The volume of the solution is $20ml$.
The molarity of the solution is $0.4{\text{M}}$.
The total volume of the solution is $100ml$.
The constant ${K_a}$ of the solution is $4 \times {10^{ - 2}}$$4 \times {10^{ - 2}}$.
First, calculate the molarity of the solution.
${M_2} = \dfrac{{{M_1}{V_1}}}{{{V_2}}}$
Substituting the values we get,
$ \Rightarrow $${M_2} = \dfrac{{0.4 \times 20}}{{100}}$
The molarity of solution is $0.08{\text{M}}$.
Write the dissociation equation of the reaction.
$HA + {H_2}O\xrightarrow{{}}{H_3}{O^ + } + {A^ - }$
The dissociation constant of the reaction ${K_a}$ is written as,
${K_a} = \dfrac{{\left[ {{H_3}{O^ + }} \right]\left[ {{A^ - }} \right]}}{{\left[ {HA} \right]}}$
Let us imagine the concentration of \[\left[ {{H_3}{O^ + }} \right]\left[ {{A^ - }} \right]\] as x.
$4 \times {10^{ - 7}} = \dfrac{{{x^2}}}{{0.08 - x}}$
$ \Rightarrow $${x^2} = 4 \times {10^{ - 7}} \times 0.08$
$ \Rightarrow $$x = 1.78 \times {10^{ - 4}}$
The concentration of Hydrogen is $1.78 \times {10^{ - 4}}$.
We can calculate the $pH$ of the solution is,
$pH = - \log \left[ {{H^ + }} \right] = 3.75$
The $pH$ of the solution is $3.75$ which is closely related to option D.
Therefore, the option D is correct.
Note: We must remember that the \[pH\] value is decided from the negative logarithm of this concentration and is employed to point the acidic, basic, or neutral character of the substance you're testing. The \[pH\] indicators are weak acids which exist as natural dyes and indicate the concentration of hydrogen ions during a solution via color change.
Complete step by step answer:
The molarity of the acid and base titration is calculated using the relation.
${M_1}{V_1} = {M_1}{V_2}$
Where,
The molarity of the acidic solution is ${M_1}$.
The volume of the acidic solution is ${V_1}$.
The molarity of the basic solution is ${M_2}$.
The volume of the basic is ${V_2}$.
Given,
The volume of water is $80ml$
The volume of the solution is $20ml$.
The molarity of the solution is $0.4{\text{M}}$.
The total volume of the solution is $100ml$.
The constant ${K_a}$ of the solution is $4 \times {10^{ - 2}}$$4 \times {10^{ - 2}}$.
First, calculate the molarity of the solution.
${M_2} = \dfrac{{{M_1}{V_1}}}{{{V_2}}}$
Substituting the values we get,
$ \Rightarrow $${M_2} = \dfrac{{0.4 \times 20}}{{100}}$
The molarity of solution is $0.08{\text{M}}$.
Write the dissociation equation of the reaction.
$HA + {H_2}O\xrightarrow{{}}{H_3}{O^ + } + {A^ - }$
The dissociation constant of the reaction ${K_a}$ is written as,
${K_a} = \dfrac{{\left[ {{H_3}{O^ + }} \right]\left[ {{A^ - }} \right]}}{{\left[ {HA} \right]}}$
Let us imagine the concentration of \[\left[ {{H_3}{O^ + }} \right]\left[ {{A^ - }} \right]\] as x.
$4 \times {10^{ - 7}} = \dfrac{{{x^2}}}{{0.08 - x}}$
$ \Rightarrow $${x^2} = 4 \times {10^{ - 7}} \times 0.08$
$ \Rightarrow $$x = 1.78 \times {10^{ - 4}}$
The concentration of Hydrogen is $1.78 \times {10^{ - 4}}$.
We can calculate the $pH$ of the solution is,
$pH = - \log \left[ {{H^ + }} \right] = 3.75$
The $pH$ of the solution is $3.75$ which is closely related to option D.
Therefore, the option D is correct.
Note: We must remember that the \[pH\] value is decided from the negative logarithm of this concentration and is employed to point the acidic, basic, or neutral character of the substance you're testing. The \[pH\] indicators are weak acids which exist as natural dyes and indicate the concentration of hydrogen ions during a solution via color change.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

