
In a $20ml$ $0.4{\text{M}} - {\text{HA}}$ solution, $80ml$ water is added. Assuming volume to be additive, the $pH$ off final solution is $\left( {{{\text{K}}_{\text{a}}}{\text{ of HA}} = 4 \times {{10}^{ - 7}},\log 2 = 0.3} \right)$
A) $5.30$
B) $4.30$
C)$3.50$
D) $3.70$
Answer
558.9k+ views
Hint:We must remember that the concentration of hydrogen ion in the solution is termed as $pH$ of the solution. It is the general way to determine the strength of base/acid. The $pH$ value ranges from $0 - 14$. For acid the value of $pH$ is $ < 7$, the $pH$ value base is $ > 7$, for the neutral molecule the value of $pH$ is equal to $0$.
Complete step by step answer:
The molarity of the acid and base titration is calculated using the relation.
${M_1}{V_1} = {M_1}{V_2}$
Where,
The molarity of the acidic solution is ${M_1}$.
The volume of the acidic solution is ${V_1}$.
The molarity of the basic solution is ${M_2}$.
The volume of the basic is ${V_2}$.
Given,
The volume of water is $80ml$
The volume of the solution is $20ml$.
The molarity of the solution is $0.4{\text{M}}$.
The total volume of the solution is $100ml$.
The constant ${K_a}$ of the solution is $4 \times {10^{ - 2}}$$4 \times {10^{ - 2}}$.
First, calculate the molarity of the solution.
${M_2} = \dfrac{{{M_1}{V_1}}}{{{V_2}}}$
Substituting the values we get,
$ \Rightarrow $${M_2} = \dfrac{{0.4 \times 20}}{{100}}$
The molarity of solution is $0.08{\text{M}}$.
Write the dissociation equation of the reaction.
$HA + {H_2}O\xrightarrow{{}}{H_3}{O^ + } + {A^ - }$
The dissociation constant of the reaction ${K_a}$ is written as,
${K_a} = \dfrac{{\left[ {{H_3}{O^ + }} \right]\left[ {{A^ - }} \right]}}{{\left[ {HA} \right]}}$
Let us imagine the concentration of \[\left[ {{H_3}{O^ + }} \right]\left[ {{A^ - }} \right]\] as x.
$4 \times {10^{ - 7}} = \dfrac{{{x^2}}}{{0.08 - x}}$
$ \Rightarrow $${x^2} = 4 \times {10^{ - 7}} \times 0.08$
$ \Rightarrow $$x = 1.78 \times {10^{ - 4}}$
The concentration of Hydrogen is $1.78 \times {10^{ - 4}}$.
We can calculate the $pH$ of the solution is,
$pH = - \log \left[ {{H^ + }} \right] = 3.75$
The $pH$ of the solution is $3.75$ which is closely related to option D.
Therefore, the option D is correct.
Note: We must remember that the \[pH\] value is decided from the negative logarithm of this concentration and is employed to point the acidic, basic, or neutral character of the substance you're testing. The \[pH\] indicators are weak acids which exist as natural dyes and indicate the concentration of hydrogen ions during a solution via color change.
Complete step by step answer:
The molarity of the acid and base titration is calculated using the relation.
${M_1}{V_1} = {M_1}{V_2}$
Where,
The molarity of the acidic solution is ${M_1}$.
The volume of the acidic solution is ${V_1}$.
The molarity of the basic solution is ${M_2}$.
The volume of the basic is ${V_2}$.
Given,
The volume of water is $80ml$
The volume of the solution is $20ml$.
The molarity of the solution is $0.4{\text{M}}$.
The total volume of the solution is $100ml$.
The constant ${K_a}$ of the solution is $4 \times {10^{ - 2}}$$4 \times {10^{ - 2}}$.
First, calculate the molarity of the solution.
${M_2} = \dfrac{{{M_1}{V_1}}}{{{V_2}}}$
Substituting the values we get,
$ \Rightarrow $${M_2} = \dfrac{{0.4 \times 20}}{{100}}$
The molarity of solution is $0.08{\text{M}}$.
Write the dissociation equation of the reaction.
$HA + {H_2}O\xrightarrow{{}}{H_3}{O^ + } + {A^ - }$
The dissociation constant of the reaction ${K_a}$ is written as,
${K_a} = \dfrac{{\left[ {{H_3}{O^ + }} \right]\left[ {{A^ - }} \right]}}{{\left[ {HA} \right]}}$
Let us imagine the concentration of \[\left[ {{H_3}{O^ + }} \right]\left[ {{A^ - }} \right]\] as x.
$4 \times {10^{ - 7}} = \dfrac{{{x^2}}}{{0.08 - x}}$
$ \Rightarrow $${x^2} = 4 \times {10^{ - 7}} \times 0.08$
$ \Rightarrow $$x = 1.78 \times {10^{ - 4}}$
The concentration of Hydrogen is $1.78 \times {10^{ - 4}}$.
We can calculate the $pH$ of the solution is,
$pH = - \log \left[ {{H^ + }} \right] = 3.75$
The $pH$ of the solution is $3.75$ which is closely related to option D.
Therefore, the option D is correct.
Note: We must remember that the \[pH\] value is decided from the negative logarithm of this concentration and is employed to point the acidic, basic, or neutral character of the substance you're testing. The \[pH\] indicators are weak acids which exist as natural dyes and indicate the concentration of hydrogen ions during a solution via color change.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
What is the difference between lightdependent and lightindependent class 11 biology CBSE

How would you explain how the lightindependent reaction class 11 biology CBSE

How are lightdependent and lightindependent reactions class 11 biology CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

10 examples of friction in our daily life

