
IIf the parametric equation of a line is given by $x=4+\dfrac{t}{\sqrt{2}}$ and $y=-
1+\sqrt{2}t$ where $t$ is the parameter, then
(a) Slope of the line is ${{\tan }^{-1}}\left( 2 \right)$
(b) Slope of the line is ${{\tan }^{-1}}\left( \dfrac{1}{2} \right)$
(c) Intercept made by the line on the x-axis $=\dfrac{9}{2}$
(d) Intercept made by the line on the y-axis $=-9$
Answer
623.7k+ views
Hint: Simplify the given line equation and substitute it into the parametric equation.
The given equations are,
$x=4+\dfrac{t}{\sqrt{2}}$ and $y=-1+\sqrt{2}t$
We have to rearrange these such that we can formulate an equation in $x$ and $y$ terms. To
change the parametric form of the equation, multiply the equation $x=4+\dfrac{t}{\sqrt{2}}$ by $2$,
$2x=8+\dfrac{2t}{\sqrt{2}}$
$2x=8+\sqrt{2}t$
From this we can write,
$\sqrt{2}t=2x-8$
Now, we can substitute this in the equation $y=-1+\sqrt{2}t$,
$y=-1+\left( 2x-8 \right)$
$y=2x-9$
The options indicate that we need to compute the slope and the intercepts of the line $y=2x-9$. It is
in the form of $y=mx+c$, where $m$ is the slope and $c$ is the y-intercept.
On comparing the equation $y=2x-9$ with the general form, we get the slope as $2$ and the y-
intercept as $-9$.
The x-intercept can be computed by taking $y=0$,
$0=2x-9$
$x=\dfrac{9}{2}$
Looking at the options, we get that both option (c) and (d) are true.
Note: The slope of a line is given by $\tan \theta $ or by $\dfrac{y}{x}$. We get the slope as $2$ for
the line in the question. It means that $\tan \theta =2$ is the slope of the line. The angle of
inclination of a line is represented by ${{\tan }^{-1}}\theta $. So, the options (a) and (b) do not
represent the slope but the angle of inclination of the line.
The given equations are,
$x=4+\dfrac{t}{\sqrt{2}}$ and $y=-1+\sqrt{2}t$
We have to rearrange these such that we can formulate an equation in $x$ and $y$ terms. To
change the parametric form of the equation, multiply the equation $x=4+\dfrac{t}{\sqrt{2}}$ by $2$,
$2x=8+\dfrac{2t}{\sqrt{2}}$
$2x=8+\sqrt{2}t$
From this we can write,
$\sqrt{2}t=2x-8$
Now, we can substitute this in the equation $y=-1+\sqrt{2}t$,
$y=-1+\left( 2x-8 \right)$
$y=2x-9$
The options indicate that we need to compute the slope and the intercepts of the line $y=2x-9$. It is
in the form of $y=mx+c$, where $m$ is the slope and $c$ is the y-intercept.
On comparing the equation $y=2x-9$ with the general form, we get the slope as $2$ and the y-
intercept as $-9$.
The x-intercept can be computed by taking $y=0$,
$0=2x-9$
$x=\dfrac{9}{2}$
Looking at the options, we get that both option (c) and (d) are true.
Note: The slope of a line is given by $\tan \theta $ or by $\dfrac{y}{x}$. We get the slope as $2$ for
the line in the question. It means that $\tan \theta =2$ is the slope of the line. The angle of
inclination of a line is represented by ${{\tan }^{-1}}\theta $. So, the options (a) and (b) do not
represent the slope but the angle of inclination of the line.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

