# If\[f(x)=\left\{ \begin{matrix}

\sqrt{x-4}\text{ if }x>4 \\

8-2x\text{ if }x<4 \\

\end{matrix} \right.\]determine whether$\underset{x\to 4}{\mathop{\lim }}\,f(x)$ exists.

Last updated date: 22nd Mar 2023

•

Total views: 306.3k

•

Views today: 6.84k

Answer

Verified

306.3k+ views

Hint: For finding out whether the limit exists, then we should find the left hand limit and right hand limit. If they are equal then the limit exists.

Complete step-by-step answer:

If $\underset{x\to 4}{\mathop{\lim }}\,f(x)\text{ }$exists then its left hand limit must be equal to its right hand limit, that is,

$\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f(x)$

Now we will find the left hand limit of the given function, we get

$\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,(8-2x)$

We also know the limit of difference is the difference of the limits. So, the limit of difference of two functions is equal to the difference of individual limits of the functions, that is,

\[\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,(8)-\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,(2x)\]

Now we know limit of a constant is always the constant, so the above equation can be written as,

\[\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f(x)=8-\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,(2x)\]

Now applying the limits, we get

$\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f(x)=8-(2\times 4)=8-8$

$\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f(x)=0........(i)$

So the left hand limit exists and is equal to zero.

Now we will find the right hand limit of the given function, we get

$\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,(\sqrt{x-4})$

Now applying the limits, we get

$\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f(x)=\sqrt{4-4}$

$\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f(x)=0.........(ii)$

So the right hand limit exists and is equal to zero.

So from equation (i) and (ii), we get

$\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f(x)$

Therefore, $\underset{x\to 4}{\mathop{\lim }}\,f(x)$exists and is equal to zero.

Note: For finding the left hand limit we applied limits rules, instead of that we can directly apply the limits to find out the left hand limit value.

Complete step-by-step answer:

If $\underset{x\to 4}{\mathop{\lim }}\,f(x)\text{ }$exists then its left hand limit must be equal to its right hand limit, that is,

$\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f(x)$

Now we will find the left hand limit of the given function, we get

$\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,(8-2x)$

We also know the limit of difference is the difference of the limits. So, the limit of difference of two functions is equal to the difference of individual limits of the functions, that is,

\[\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,(8)-\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,(2x)\]

Now we know limit of a constant is always the constant, so the above equation can be written as,

\[\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f(x)=8-\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,(2x)\]

Now applying the limits, we get

$\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f(x)=8-(2\times 4)=8-8$

$\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f(x)=0........(i)$

So the left hand limit exists and is equal to zero.

Now we will find the right hand limit of the given function, we get

$\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,(\sqrt{x-4})$

Now applying the limits, we get

$\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f(x)=\sqrt{4-4}$

$\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f(x)=0.........(ii)$

So the right hand limit exists and is equal to zero.

So from equation (i) and (ii), we get

$\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f(x)$

Therefore, $\underset{x\to 4}{\mathop{\lim }}\,f(x)$exists and is equal to zero.

Note: For finding the left hand limit we applied limits rules, instead of that we can directly apply the limits to find out the left hand limit value.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE