# If$f(x) = {\cos ^2}x + {\cos ^2}2x + {\cos ^2}3x$, then number of values of $x \in [0,2\pi ]$for which $f(x) = 0$ are

A.4

B.6

C.8

D.0

Last updated date: 25th Mar 2023

•

Total views: 309.6k

•

Views today: 4.86k

Answer

Verified

309.6k+ views

Hint: All the terms in the right hand side are squared. Think about what we can deduce from here.

Given, $f(x) = {\cos ^2}x + {\cos ^2}2x + {\cos ^2}3x$.

Since, every term in the right-hand side of the equation is squared, the value of each individual term could be either zero or greater than zero. We are interested in $x$ where $f(x) = 0$. For$f(x)$to be zero, each individual on the right-hand side has to be zero. That is${\cos ^2}x = 0,{\cos ^2}2x = 0{\text{ and }}{\cos ^2}3x = 0$.Now let’s solve them one by one.

\[{\cos ^2}x = 0 \Leftrightarrow \cos x = 0 \Leftrightarrow x = \frac{\pi }{2},\frac{{3\pi }}{2}\]

\[{\cos ^2}2x = 0 \Leftrightarrow \cos 2x = 0 \Leftrightarrow 2x = \frac{\pi }{2},\frac{{3\pi }}{2} \Leftrightarrow x = \frac{\pi }{4},\frac{{3\pi }}{4}\]

\[{\cos ^2}3x = 0 \Leftrightarrow \cos 3x = 0 \Leftrightarrow 3x = \frac{\pi }{2},\frac{{3\pi }}{2} \Leftrightarrow x = \frac{\pi }{6},\frac{{3\pi }}{6}\]

Observe that, there is no common value of $x$ in all the above terms. The question should come in our mind as to why we are finding the common values. It’s just because we want $x$ where$f(x) = 0$ and $f(x) = 0$ when all the individual terms on the right hand side will be zero. It means for a single value of $x$, all the terms on the right-hand side has to vanish simultaneously. That’s why we are looking at the common value of $x$ where ${\cos ^2}x = 0,{\cos ^2}2x = 0{\text{ and }}{\cos ^2}3x = 0$.But, there is no such common value in the given domain. So, there is no $x$ for which $f(x) = 0$.

Hence the correct option is D

Note: When you are finding the roots of something, keep domain in your mind. Here we have given our domain as $f(x) = 0$. So, we only considered such x where $f(x) = 0$ in the given domain. One should not step out of the domain.

Given, $f(x) = {\cos ^2}x + {\cos ^2}2x + {\cos ^2}3x$.

Since, every term in the right-hand side of the equation is squared, the value of each individual term could be either zero or greater than zero. We are interested in $x$ where $f(x) = 0$. For$f(x)$to be zero, each individual on the right-hand side has to be zero. That is${\cos ^2}x = 0,{\cos ^2}2x = 0{\text{ and }}{\cos ^2}3x = 0$.Now let’s solve them one by one.

\[{\cos ^2}x = 0 \Leftrightarrow \cos x = 0 \Leftrightarrow x = \frac{\pi }{2},\frac{{3\pi }}{2}\]

\[{\cos ^2}2x = 0 \Leftrightarrow \cos 2x = 0 \Leftrightarrow 2x = \frac{\pi }{2},\frac{{3\pi }}{2} \Leftrightarrow x = \frac{\pi }{4},\frac{{3\pi }}{4}\]

\[{\cos ^2}3x = 0 \Leftrightarrow \cos 3x = 0 \Leftrightarrow 3x = \frac{\pi }{2},\frac{{3\pi }}{2} \Leftrightarrow x = \frac{\pi }{6},\frac{{3\pi }}{6}\]

Observe that, there is no common value of $x$ in all the above terms. The question should come in our mind as to why we are finding the common values. It’s just because we want $x$ where$f(x) = 0$ and $f(x) = 0$ when all the individual terms on the right hand side will be zero. It means for a single value of $x$, all the terms on the right-hand side has to vanish simultaneously. That’s why we are looking at the common value of $x$ where ${\cos ^2}x = 0,{\cos ^2}2x = 0{\text{ and }}{\cos ^2}3x = 0$.But, there is no such common value in the given domain. So, there is no $x$ for which $f(x) = 0$.

Hence the correct option is D

Note: When you are finding the roots of something, keep domain in your mind. Here we have given our domain as $f(x) = 0$. So, we only considered such x where $f(x) = 0$ in the given domain. One should not step out of the domain.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE