
If$f(x) = {\cos ^2}x + {\cos ^2}2x + {\cos ^2}3x$, then number of values of $x \in [0,2\pi ]$for which $f(x) = 0$ are
A.4
B.6
C.8
D.0
Answer
610.8k+ views
Hint: All the terms in the right hand side are squared. Think about what we can deduce from here.
Given, $f(x) = {\cos ^2}x + {\cos ^2}2x + {\cos ^2}3x$.
Since, every term in the right-hand side of the equation is squared, the value of each individual term could be either zero or greater than zero. We are interested in $x$ where $f(x) = 0$. For$f(x)$to be zero, each individual on the right-hand side has to be zero. That is${\cos ^2}x = 0,{\cos ^2}2x = 0{\text{ and }}{\cos ^2}3x = 0$.Now let’s solve them one by one.
\[{\cos ^2}x = 0 \Leftrightarrow \cos x = 0 \Leftrightarrow x = \frac{\pi }{2},\frac{{3\pi }}{2}\]
\[{\cos ^2}2x = 0 \Leftrightarrow \cos 2x = 0 \Leftrightarrow 2x = \frac{\pi }{2},\frac{{3\pi }}{2} \Leftrightarrow x = \frac{\pi }{4},\frac{{3\pi }}{4}\]
\[{\cos ^2}3x = 0 \Leftrightarrow \cos 3x = 0 \Leftrightarrow 3x = \frac{\pi }{2},\frac{{3\pi }}{2} \Leftrightarrow x = \frac{\pi }{6},\frac{{3\pi }}{6}\]
Observe that, there is no common value of $x$ in all the above terms. The question should come in our mind as to why we are finding the common values. It’s just because we want $x$ where$f(x) = 0$ and $f(x) = 0$ when all the individual terms on the right hand side will be zero. It means for a single value of $x$, all the terms on the right-hand side has to vanish simultaneously. That’s why we are looking at the common value of $x$ where ${\cos ^2}x = 0,{\cos ^2}2x = 0{\text{ and }}{\cos ^2}3x = 0$.But, there is no such common value in the given domain. So, there is no $x$ for which $f(x) = 0$.
Hence the correct option is D
Note: When you are finding the roots of something, keep domain in your mind. Here we have given our domain as $f(x) = 0$. So, we only considered such x where $f(x) = 0$ in the given domain. One should not step out of the domain.
Given, $f(x) = {\cos ^2}x + {\cos ^2}2x + {\cos ^2}3x$.
Since, every term in the right-hand side of the equation is squared, the value of each individual term could be either zero or greater than zero. We are interested in $x$ where $f(x) = 0$. For$f(x)$to be zero, each individual on the right-hand side has to be zero. That is${\cos ^2}x = 0,{\cos ^2}2x = 0{\text{ and }}{\cos ^2}3x = 0$.Now let’s solve them one by one.
\[{\cos ^2}x = 0 \Leftrightarrow \cos x = 0 \Leftrightarrow x = \frac{\pi }{2},\frac{{3\pi }}{2}\]
\[{\cos ^2}2x = 0 \Leftrightarrow \cos 2x = 0 \Leftrightarrow 2x = \frac{\pi }{2},\frac{{3\pi }}{2} \Leftrightarrow x = \frac{\pi }{4},\frac{{3\pi }}{4}\]
\[{\cos ^2}3x = 0 \Leftrightarrow \cos 3x = 0 \Leftrightarrow 3x = \frac{\pi }{2},\frac{{3\pi }}{2} \Leftrightarrow x = \frac{\pi }{6},\frac{{3\pi }}{6}\]
Observe that, there is no common value of $x$ in all the above terms. The question should come in our mind as to why we are finding the common values. It’s just because we want $x$ where$f(x) = 0$ and $f(x) = 0$ when all the individual terms on the right hand side will be zero. It means for a single value of $x$, all the terms on the right-hand side has to vanish simultaneously. That’s why we are looking at the common value of $x$ where ${\cos ^2}x = 0,{\cos ^2}2x = 0{\text{ and }}{\cos ^2}3x = 0$.But, there is no such common value in the given domain. So, there is no $x$ for which $f(x) = 0$.
Hence the correct option is D
Note: When you are finding the roots of something, keep domain in your mind. Here we have given our domain as $f(x) = 0$. So, we only considered such x where $f(x) = 0$ in the given domain. One should not step out of the domain.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

