
If$f(x) = {\cos ^2}x + {\cos ^2}2x + {\cos ^2}3x$, then number of values of $x \in [0,2\pi ]$for which $f(x) = 0$ are
A.4
B.6
C.8
D.0
Answer
623.1k+ views
Hint: All the terms in the right hand side are squared. Think about what we can deduce from here.
Given, $f(x) = {\cos ^2}x + {\cos ^2}2x + {\cos ^2}3x$.
Since, every term in the right-hand side of the equation is squared, the value of each individual term could be either zero or greater than zero. We are interested in $x$ where $f(x) = 0$. For$f(x)$to be zero, each individual on the right-hand side has to be zero. That is${\cos ^2}x = 0,{\cos ^2}2x = 0{\text{ and }}{\cos ^2}3x = 0$.Now let’s solve them one by one.
\[{\cos ^2}x = 0 \Leftrightarrow \cos x = 0 \Leftrightarrow x = \frac{\pi }{2},\frac{{3\pi }}{2}\]
\[{\cos ^2}2x = 0 \Leftrightarrow \cos 2x = 0 \Leftrightarrow 2x = \frac{\pi }{2},\frac{{3\pi }}{2} \Leftrightarrow x = \frac{\pi }{4},\frac{{3\pi }}{4}\]
\[{\cos ^2}3x = 0 \Leftrightarrow \cos 3x = 0 \Leftrightarrow 3x = \frac{\pi }{2},\frac{{3\pi }}{2} \Leftrightarrow x = \frac{\pi }{6},\frac{{3\pi }}{6}\]
Observe that, there is no common value of $x$ in all the above terms. The question should come in our mind as to why we are finding the common values. It’s just because we want $x$ where$f(x) = 0$ and $f(x) = 0$ when all the individual terms on the right hand side will be zero. It means for a single value of $x$, all the terms on the right-hand side has to vanish simultaneously. That’s why we are looking at the common value of $x$ where ${\cos ^2}x = 0,{\cos ^2}2x = 0{\text{ and }}{\cos ^2}3x = 0$.But, there is no such common value in the given domain. So, there is no $x$ for which $f(x) = 0$.
Hence the correct option is D
Note: When you are finding the roots of something, keep domain in your mind. Here we have given our domain as $f(x) = 0$. So, we only considered such x where $f(x) = 0$ in the given domain. One should not step out of the domain.
Given, $f(x) = {\cos ^2}x + {\cos ^2}2x + {\cos ^2}3x$.
Since, every term in the right-hand side of the equation is squared, the value of each individual term could be either zero or greater than zero. We are interested in $x$ where $f(x) = 0$. For$f(x)$to be zero, each individual on the right-hand side has to be zero. That is${\cos ^2}x = 0,{\cos ^2}2x = 0{\text{ and }}{\cos ^2}3x = 0$.Now let’s solve them one by one.
\[{\cos ^2}x = 0 \Leftrightarrow \cos x = 0 \Leftrightarrow x = \frac{\pi }{2},\frac{{3\pi }}{2}\]
\[{\cos ^2}2x = 0 \Leftrightarrow \cos 2x = 0 \Leftrightarrow 2x = \frac{\pi }{2},\frac{{3\pi }}{2} \Leftrightarrow x = \frac{\pi }{4},\frac{{3\pi }}{4}\]
\[{\cos ^2}3x = 0 \Leftrightarrow \cos 3x = 0 \Leftrightarrow 3x = \frac{\pi }{2},\frac{{3\pi }}{2} \Leftrightarrow x = \frac{\pi }{6},\frac{{3\pi }}{6}\]
Observe that, there is no common value of $x$ in all the above terms. The question should come in our mind as to why we are finding the common values. It’s just because we want $x$ where$f(x) = 0$ and $f(x) = 0$ when all the individual terms on the right hand side will be zero. It means for a single value of $x$, all the terms on the right-hand side has to vanish simultaneously. That’s why we are looking at the common value of $x$ where ${\cos ^2}x = 0,{\cos ^2}2x = 0{\text{ and }}{\cos ^2}3x = 0$.But, there is no such common value in the given domain. So, there is no $x$ for which $f(x) = 0$.
Hence the correct option is D
Note: When you are finding the roots of something, keep domain in your mind. Here we have given our domain as $f(x) = 0$. So, we only considered such x where $f(x) = 0$ in the given domain. One should not step out of the domain.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

