
If$A = \left[ {\begin{array}{*{20}{c}}
4&2 \\
{ - 1}&1
\end{array}} \right]$,prove that$(A - 2I)(A - 3I) = 0$
Answer
605.4k+ views
Hint: $I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$
Given, $A = \left[ {\begin{array}{*{20}{c}}
4&2 \\
{ - 1}&1
\end{array}} \right]$. First, we’ll compute $(A - 2I)$where$I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$.
$
(A - 2I) \Rightarrow \left[ {\begin{array}{*{20}{c}}
4&2 \\
{ - 1}&1
\end{array}} \right] - 2\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}}
4&2 \\
{ - 1}&1
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
2&0 \\
0&2
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{4 - 2}&{2 - 0} \\
{ - 1 - 0}&{1 - 2}
\end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}}
2&2 \\
{ - 1}&{ - 1}
\end{array}} \right] \\
$
Now, $
(A - 3I) \Rightarrow \left[ {\begin{array}{*{20}{c}}
4&2 \\
{ - 1}&1
\end{array}} \right] - 3\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}}
4&2 \\
{ - 1}&1
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
3&0 \\
0&3
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{4 - 3}&{2 - 0} \\
{ - 1 - 0}&{1 - 3}
\end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&{ - 2}
\end{array}} \right] \\
$
And, \[
(A - 2I)(A - 3I) \Rightarrow \left[ {\begin{array}{*{20}{c}}
2&2 \\
{ - 1}&{ - 1}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&{ - 2}
\end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}}
{2 \times 1 + 2 \times ( - 1)}&{2 \times 2 + 2 \times ( - 2)} \\
{( - 1) \times 1 + ( - 1) \times ( - 1)}&{( - 1) \times 2 + ( - 1) \times ( - 2)}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{2 - 2}&{4 - 4} \\
{ - 1 + 1}&{ - 2 + 2}
\end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}}
0&0 \\
0&0
\end{array}} \right] \Rightarrow 0 \\
\]
Hence Proved.
Note: It is crucial to perform scalar multiplication with matrix and matrix addition/subtraction with accuracy to achieve the correct solution.
1&0 \\
0&1
\end{array}} \right]$
Given, $A = \left[ {\begin{array}{*{20}{c}}
4&2 \\
{ - 1}&1
\end{array}} \right]$. First, we’ll compute $(A - 2I)$where$I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$.
$
(A - 2I) \Rightarrow \left[ {\begin{array}{*{20}{c}}
4&2 \\
{ - 1}&1
\end{array}} \right] - 2\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}}
4&2 \\
{ - 1}&1
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
2&0 \\
0&2
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{4 - 2}&{2 - 0} \\
{ - 1 - 0}&{1 - 2}
\end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}}
2&2 \\
{ - 1}&{ - 1}
\end{array}} \right] \\
$
Now, $
(A - 3I) \Rightarrow \left[ {\begin{array}{*{20}{c}}
4&2 \\
{ - 1}&1
\end{array}} \right] - 3\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}}
4&2 \\
{ - 1}&1
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
3&0 \\
0&3
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{4 - 3}&{2 - 0} \\
{ - 1 - 0}&{1 - 3}
\end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&{ - 2}
\end{array}} \right] \\
$
And, \[
(A - 2I)(A - 3I) \Rightarrow \left[ {\begin{array}{*{20}{c}}
2&2 \\
{ - 1}&{ - 1}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&{ - 2}
\end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}}
{2 \times 1 + 2 \times ( - 1)}&{2 \times 2 + 2 \times ( - 2)} \\
{( - 1) \times 1 + ( - 1) \times ( - 1)}&{( - 1) \times 2 + ( - 1) \times ( - 2)}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{2 - 2}&{4 - 4} \\
{ - 1 + 1}&{ - 2 + 2}
\end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}}
0&0 \\
0&0
\end{array}} \right] \Rightarrow 0 \\
\]
Hence Proved.
Note: It is crucial to perform scalar multiplication with matrix and matrix addition/subtraction with accuracy to achieve the correct solution.
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

