
If ${z_1} = \sqrt 2 \left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)$ and ${z_2} = \sqrt 3 \left( {\cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3}} \right)$ , then $\left| {{z_1}{z_2}} \right|$ is equal to
A. $6$
B. $\sqrt 2 $
C. $\sqrt 6 $
D. $\sqrt 2 + \sqrt 3 $
Answer
490.2k+ views
Hint: In this question we have been given ${z_1} = \sqrt 2 \left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)$ and ${z_2} = \sqrt 3 \left( {\cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3}} \right)$We have the value of $\left| {{z_1}{z_2}} \right|$.
we can see that the value is in mode and the above expression is in the form of
$z = x + iy$ . This is the form of a complex number. So if we have to find the value of
$\left| z \right|$ , we can write the expression as the root of the square of the real number which is $x$ and the root of the square of the imaginary number which is $y$, i.e.
$\left| z \right| = \sqrt {{x^2} + {y^2}} $ . So we will use this formula to solve the above question.
Complete step by step solution:
Here we have
${z_1} = \sqrt 2 \left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)$
And,
${z_2} = \sqrt 3 \left( {\cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3}} \right)$ ,
In the first term, we have real number i.e.
$x = \cos \dfrac{\pi }{4}$ and the imaginary number i.e.
$y = \sin \dfrac{\pi }{4}$
We can also write the term as
${z_1} = \left( {\sqrt 2 \cos \dfrac{\pi }{4} + \sqrt 2 i\sin \dfrac{\pi }{4}} \right)$
So by applying the formula we can write
$\left| {{z_1}} \right| = \sqrt {\left( {\sqrt 2 \cos \dfrac{\pi }{4}}^2 \right) + {{\left( {\sqrt 2 \sin \dfrac{\pi }{4}} \right)}^2}} $
We can take the common factor out, so we have
$\left| {{z_1}} \right| = \sqrt {{{(\sqrt 2 )}^2}{{\left( {\cos \dfrac{\pi }{4}} \right)}^2} + {{\left( {\sin \dfrac{\pi }{4}} \right)}^2}} $
We know that
${\sin ^2}\theta + {\cos ^2}\theta = 1$ , so by applying this we can write
$\left| {{z_1}} \right| = \sqrt 2 \times 1 = \sqrt 2 $
Now we will solve
${z_2} = \sqrt 3 \left( {\cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3}} \right)$ ,
Here we have real number i.e.
$x = \cos \dfrac{\pi }{3}$ and the imaginary number i.e.
$y = \sin \dfrac{\pi }{3}$
We can also write the term as
${z_2} = \left( {\sqrt 3 \cos \dfrac{\pi }{3} + \sqrt {3\,} i\sin \dfrac{\pi }{3}} \right)$
Similarly as above applying the formula we can write
$\left| {{z_2}} \right| = \sqrt {\left( {\sqrt 3 \cos \dfrac{\pi }{3}}^2 \right) + {{\left( {\sqrt 3 \sin \dfrac{\pi }{3}} \right)}^2}} $
We can take the common factor out, so we have
$\left| {{z_2}} \right| = \sqrt {{{(\sqrt 3 )}^2}{{\left( {\cos \dfrac{\pi }{3}} \right)}^2} + {{\left( {\sin \dfrac{\pi }{3}} \right)}^2}} $
Now by applying the identity of
${\sin ^2}\theta + {\cos ^2}\theta = 1$ , we can write
$\left| {{z_2}} \right| = \sqrt 3 \times 1 = \sqrt 3 $
Now we can put the values together and we have
$\left| {{z_1}{z_2}} \right| = \sqrt 2 \times \sqrt 3 = \sqrt 6 $
Hence the correct option is (C) $\sqrt 6 $.
Note:
We should note that the value of $i$ is $\sqrt { - 1} $ .
This is the imaginary number, also called iota. So if we square the value of iota i.e. ${i^2}$ , we get the value $\sqrt { - 1} \times \sqrt { - 1} = - 1$ .
So it gives us ${i^2} = - 1$ .
we can see that the value is in mode and the above expression is in the form of
$z = x + iy$ . This is the form of a complex number. So if we have to find the value of
$\left| z \right|$ , we can write the expression as the root of the square of the real number which is $x$ and the root of the square of the imaginary number which is $y$, i.e.
$\left| z \right| = \sqrt {{x^2} + {y^2}} $ . So we will use this formula to solve the above question.
Complete step by step solution:
Here we have
${z_1} = \sqrt 2 \left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)$
And,
${z_2} = \sqrt 3 \left( {\cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3}} \right)$ ,
In the first term, we have real number i.e.
$x = \cos \dfrac{\pi }{4}$ and the imaginary number i.e.
$y = \sin \dfrac{\pi }{4}$
We can also write the term as
${z_1} = \left( {\sqrt 2 \cos \dfrac{\pi }{4} + \sqrt 2 i\sin \dfrac{\pi }{4}} \right)$
So by applying the formula we can write
$\left| {{z_1}} \right| = \sqrt {\left( {\sqrt 2 \cos \dfrac{\pi }{4}}^2 \right) + {{\left( {\sqrt 2 \sin \dfrac{\pi }{4}} \right)}^2}} $
We can take the common factor out, so we have
$\left| {{z_1}} \right| = \sqrt {{{(\sqrt 2 )}^2}{{\left( {\cos \dfrac{\pi }{4}} \right)}^2} + {{\left( {\sin \dfrac{\pi }{4}} \right)}^2}} $
We know that
${\sin ^2}\theta + {\cos ^2}\theta = 1$ , so by applying this we can write
$\left| {{z_1}} \right| = \sqrt 2 \times 1 = \sqrt 2 $
Now we will solve
${z_2} = \sqrt 3 \left( {\cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3}} \right)$ ,
Here we have real number i.e.
$x = \cos \dfrac{\pi }{3}$ and the imaginary number i.e.
$y = \sin \dfrac{\pi }{3}$
We can also write the term as
${z_2} = \left( {\sqrt 3 \cos \dfrac{\pi }{3} + \sqrt {3\,} i\sin \dfrac{\pi }{3}} \right)$
Similarly as above applying the formula we can write
$\left| {{z_2}} \right| = \sqrt {\left( {\sqrt 3 \cos \dfrac{\pi }{3}}^2 \right) + {{\left( {\sqrt 3 \sin \dfrac{\pi }{3}} \right)}^2}} $
We can take the common factor out, so we have
$\left| {{z_2}} \right| = \sqrt {{{(\sqrt 3 )}^2}{{\left( {\cos \dfrac{\pi }{3}} \right)}^2} + {{\left( {\sin \dfrac{\pi }{3}} \right)}^2}} $
Now by applying the identity of
${\sin ^2}\theta + {\cos ^2}\theta = 1$ , we can write
$\left| {{z_2}} \right| = \sqrt 3 \times 1 = \sqrt 3 $
Now we can put the values together and we have
$\left| {{z_1}{z_2}} \right| = \sqrt 2 \times \sqrt 3 = \sqrt 6 $
Hence the correct option is (C) $\sqrt 6 $.
Note:
We should note that the value of $i$ is $\sqrt { - 1} $ .
This is the imaginary number, also called iota. So if we square the value of iota i.e. ${i^2}$ , we get the value $\sqrt { - 1} \times \sqrt { - 1} = - 1$ .
So it gives us ${i^2} = - 1$ .
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

