Answer

Verified

341.7k+ views

**Hint:**As in the question we have given ${z_1}$ is a complex number let’s consider ${z_1} = x + iy$ where $x$ is real part and $iy$ is imaginary part. Using all the given conditions which are given in the question we can find the ${z_2}$ and arrive at the required answer.

**Complete step by step answer:**

Here in this question we have given that ${z_1}$ is a complex number, so we can write ${z_1}$ as ${z_1} = x + iy$ where $x$ is real part and $iy$ is imaginary part.

As we have given $\left| {{z_1}} \right| = 1$ we can write as below.

$\left| {{z_1}} \right| = 1$

$ \Rightarrow \sqrt {{x^2} + {y^2}} = 1$

Squaring on both the sides and simplifying, we get

$ \Rightarrow {x^2} + {y^2} = 1$

Also we have given ${z_1} \ne - 1$

$ \Rightarrow x + iy \ne - 1$

$ \Rightarrow x \ne - 1$

Now, they have asked to show the real part of ${z_2}$ is zero in the expression ${z_2} = \dfrac{{{z_1} - 1}}{{{z_1} + 1}}$.

Now, in the above expression of ${z_2}$ replace ${z_1} = x + iy$ and simplify the expression. Therefore, we get

${z_2} = \dfrac{{\left( {x + iy} \right) - 1}}{{\left( {x + iy} \right) + 1}}$

The above expression can be written as below, for the simplification purpose.

$ \Rightarrow {z_2} = \dfrac{{\left( {x - 1} \right) + iy}}{{\left( {x + 1} \right) + iy}}$

Now multiply and divide the above expression by conjugate of the value, which is as below.

$ \Rightarrow {z_2} = \dfrac{{\left( {x - 1} \right) + iy}}{{\left( {x + 1} \right) + iy}} \times \dfrac{{\left( {x - 1} \right) - iy}}{{\left( {x + 1} \right) - iy}}$

Now, we simplify the above expression. We get

$ \Rightarrow {z_2} = \dfrac{{\left( {x - 1} \right)\left( {x + 1} \right) - \left( {x - 1} \right)y.i + \left( {x + 1} \right)y.i - {y^2}{i^2}}}{{{{\left( {{x^2} + 1} \right)}^2} - {{\left( {iy} \right)}^2}}}$

$ \Rightarrow {z_2} = \dfrac{{\left( {x - 1} \right)\left( {x + 1} \right) - \left( {x - 1} \right)y.i + \left( {x + 1} \right)y.i - {y^2}{i^2}}}{{{{\left( {{x^2} + 1} \right)}^2} - {{\left( {iy} \right)}^2}}}$

Now, simplify the above expression by separating the real and imaginary terms, we write as

$ \Rightarrow {z_2} = \dfrac{{\left( {{x^2} - 1 + {y^2}} \right) + i\left( { - xy + y + xy + y} \right)}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}$ (we know ${i^2} = - 1$)

$ \Rightarrow {z_2} = \dfrac{{\left( {{x^2} + {y^2} - 1} \right) + 2iy}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}$

By using the condition which we have ${x^2} + {y^2} = 1$ in the above equation, we get

$ \Rightarrow {z_2} = \dfrac{{\left( {1 - 1} \right) + 2iy}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}$

$ \Rightarrow {z_2} = \dfrac{{2iy}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}$

The above expression can be written as

$ \Rightarrow {z_2} = 0 + i.\dfrac{{2y}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}$

In the above expression we have the real part as $0$ and the imaginary part as $i.\dfrac{{2y}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}$.

**Hence we have proved that the real parts of ${z_2}$ are zero.**

**Note:**

Whenever we have this type of problem, first we need to consider complex values and then when it comes to the simplification part, it’s very important to be careful while solving using the conjugate values of the corresponding values. If you fail to take the correct conjugate values then you may end up with the wrong answer.

Recently Updated Pages

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE

Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE

What are the possible quantum number for the last outermost class 11 chemistry CBSE

Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE

What happens when entropy reaches maximum class 11 chemistry JEE_Main

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.

Write the difference between soap and detergent class 10 chemistry CBSE

Give 10 examples of unisexual and bisexual flowers

Differentiate between calcination and roasting class 11 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is the difference between anaerobic aerobic respiration class 10 biology CBSE

a Why did Mendel choose pea plants for his experiments class 10 biology CBSE