
If $z=1+2i$, then find the value of ${{z}^{2}}$.
Answer
513.6k+ views
Hint: To evaluate the value of the given algebraic expression, substitute the value of the given complex number in the given expression, and simplify it using the algebraic identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$. Calculate the value of the expression using the fact that $i$ is a root of unity.
Complete step-by-step solution -
We know that $z=1+2i$. We have to calculate the value of ${{z}^{2}}$.
We observe that $z=1+2i$ is a complex number while ${{z}^{2}}$ is an algebraic expression. We will evaluate the value of this expression at $z=1+2i$.
To do so, we will substitute $z=1+2i$ in the given expression and simplify it using the algebraic identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
Thus, we have ${{z}^{2}}={{\left( 1+2i \right)}^{2}}$.
Simplifying the above expression using the algebraic identity, we have ${{z}^{2}}={{\left( 1+2i \right)}^{2}}={{1}^{2}}+{{\left( 2i \right)}^{2}}+2\left( 2i \right)\left( 1 \right)$
So, we have \[{{z}^{2}}={{\left( 1+2i \right)}^{2}}={{1}^{2}}+{{\left( 2i \right)}^{2}}+2\left( 1 \right)\left( 2i \right)=1+4{{i}^{2}}+4i\].
We know that $i=\sqrt{-1}$. Thus, we have ${{i}^{2}}=-1$.
Simplifying the above expression, we have \[{{z}^{2}}={{\left( 1+2i \right)}^{2}}={{1}^{2}}+{{\left( 2i \right)}^{2}}+2\left( 1 \right)\left( 2i \right)=1+4{{i}^{2}}+4i=1+4\left( -1 \right)+4i\].
We can further solve the above expression to write it as \[{{z}^{2}}={{\left( 1+2i \right)}^{2}}={{1}^{2}}+{{\left( 2i \right)}^{2}}+2\left( 1 \right)\left( 2i \right)=1+4{{i}^{2}}+4i=1+4\left( -1 \right)+4i=1-4+4i=-3+4i\].
Hence, the value of ${{z}^{2}}$ when $z=1+2i$ is \[-3+4i\].
Note: We must keep in mind that $i=\sqrt{-1}$ is the root of unity. It is a solution to the equation ${{x}^{2}}+1=0$. Thus, we have ${{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}=-1$. We can write any complex number in the form $a+ib$, where $ib$ is the imaginary part and $a$ is the real part. We can’t solve this question without using the algebraic identity.
Complete step-by-step solution -
We know that $z=1+2i$. We have to calculate the value of ${{z}^{2}}$.
We observe that $z=1+2i$ is a complex number while ${{z}^{2}}$ is an algebraic expression. We will evaluate the value of this expression at $z=1+2i$.
To do so, we will substitute $z=1+2i$ in the given expression and simplify it using the algebraic identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
Thus, we have ${{z}^{2}}={{\left( 1+2i \right)}^{2}}$.
Simplifying the above expression using the algebraic identity, we have ${{z}^{2}}={{\left( 1+2i \right)}^{2}}={{1}^{2}}+{{\left( 2i \right)}^{2}}+2\left( 2i \right)\left( 1 \right)$
So, we have \[{{z}^{2}}={{\left( 1+2i \right)}^{2}}={{1}^{2}}+{{\left( 2i \right)}^{2}}+2\left( 1 \right)\left( 2i \right)=1+4{{i}^{2}}+4i\].
We know that $i=\sqrt{-1}$. Thus, we have ${{i}^{2}}=-1$.
Simplifying the above expression, we have \[{{z}^{2}}={{\left( 1+2i \right)}^{2}}={{1}^{2}}+{{\left( 2i \right)}^{2}}+2\left( 1 \right)\left( 2i \right)=1+4{{i}^{2}}+4i=1+4\left( -1 \right)+4i\].
We can further solve the above expression to write it as \[{{z}^{2}}={{\left( 1+2i \right)}^{2}}={{1}^{2}}+{{\left( 2i \right)}^{2}}+2\left( 1 \right)\left( 2i \right)=1+4{{i}^{2}}+4i=1+4\left( -1 \right)+4i=1-4+4i=-3+4i\].
Hence, the value of ${{z}^{2}}$ when $z=1+2i$ is \[-3+4i\].
Note: We must keep in mind that $i=\sqrt{-1}$ is the root of unity. It is a solution to the equation ${{x}^{2}}+1=0$. Thus, we have ${{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}=-1$. We can write any complex number in the form $a+ib$, where $ib$ is the imaginary part and $a$ is the real part. We can’t solve this question without using the algebraic identity.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
