Answer
Verified
427.2k+ views
Hint: according to the question we have to find the value of $\dfrac{1}{{{a^2} + {b^2}}}\left( {\dfrac{x}{a} + \dfrac{y}{b}} \right)$when $z = x + iy$ is a complex number such that ${\left( {\overline z } \right)^{\dfrac{1}{3}}} = a + ib$
So, first of all we have to taking cube both side of the given expression ${\left( {\overline z } \right)^{\dfrac{1}{3}}} = a + ib$and put the conjugate of $z$ that is $\overline z = x - iy$
Formula used for the cube of $\left( {a + b} \right)$ that is mentioned below.
Formula used:
${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab(a + b).............................(A)$
Now, we have to compare both real and imaginary roots of $x - iy$and the expression obtained after taking the cube of $a + ib$to get the values of $\dfrac{x}{a}$and $\dfrac{y}{b}$
Now, we have to put the values of $\dfrac{x}{a}$and $\dfrac{y}{b}$in the given expression $\dfrac{1}{{{a^2} + {b^2}}}\left( {\dfrac{x}{a} + \dfrac{y}{b}} \right)$to get the desired value.
Complete answer:
Step 1: First of all we have to taking cube both side of the given expression ${\left( {\overline z } \right)^{\dfrac{1}{3}}} = a + ib$
$ \Rightarrow \overline z = {(a + ib)^3}$
Now, use the formula of cube (A) that is mentioned in the solution hint.
$
\Rightarrow (x - iy) = {a^3} + {\left( {ib} \right)^3} + 3\left( a \right)\left( {ib} \right)\left( {a + ib} \right) \\
\Rightarrow (x - iy) = {a^3} + {i^3}{b^3} + 3{a^2}\left( {ib} \right) + 3a{\left( {ib} \right)^2} \\
$
As we know that ${i^2} = - 1$and ${i^3} = - i$
$
\Rightarrow (x - iy) = {a^3} - i{b^3} + 3{a^2}\left( {ib} \right) - 3a{b^2} \\
\Rightarrow (x - iy) = {a^3} - 3a{b^2} + i\left( {3{a^2}b - {b^3}} \right).......................(1) \\
$
Step 3: Now, we have to compare the both real and imaginary values of the expression (1) as obtained in the solution step 2.
$ \Rightarrow x = \left( {{a^3} - 3a{b^2}} \right)$and, $y = - \left( {\left( {3{a^2}b - {b^3}} \right)} \right)$
$ \Rightarrow \dfrac{x}{a} = \left( {{a^2} - 3{b^2}} \right)$and, $\dfrac{y}{b} = \left( {\left( { - 3{a^2} + {b^2}} \right)} \right)...............................(2)$
Step 4: Now, we have to the values of $\dfrac{x}{a}$and $\dfrac{y}{b}$from the expression (2) in the given expression$\dfrac{1}{{{a^2} + {b^2}}}\left( {\dfrac{x}{a} + \dfrac{y}{b}} \right)$
\[
\Rightarrow \dfrac{1}{{{a^2} + {b^2}}}\left( {\left( {{a^2} - 3{b^2}} \right) + \left( { - 3{a^2} + {b^2}} \right)} \right) \\
\Rightarrow \dfrac{1}{{{a^2} + {b^2}}}\left( {{a^2} - 3{a^2} + {b^2} - 3{b^2}} \right) \\
\]
Now, solving the expression as obtained just above,
\[
\Rightarrow \dfrac{1}{{{a^2} + {b^2}}}\left( { - 2{b^2} - 2{a^2}} \right) \\
\Rightarrow \dfrac{1}{{{a^2} + {b^2}}}\left\{ { - 2\left( {{a^2} + {b^2}} \right)} \right\} \\
\]
On eliminating the terms which can be eliminated,
\[ \Rightarrow - 2\]
Hence, we have obtained the value of $\dfrac{1}{{{a^2} + {b^2}}}\left( {\dfrac{x}{a} + \dfrac{y}{b}} \right) = - 2$. Therefore option (B) is correct.
Note:
It is necessary that we have to find the cube of the expression given in the question then we can compare the real and imaginary roots with the conjugate of z which is $\overline z = x - iy$ and where z is $ = x + iy$.
It is necessary that we have to find the value of $\dfrac{x}{a}$and $\dfrac{y}{b}$with the help of comparing the expression of terms x and y.
So, first of all we have to taking cube both side of the given expression ${\left( {\overline z } \right)^{\dfrac{1}{3}}} = a + ib$and put the conjugate of $z$ that is $\overline z = x - iy$
Formula used for the cube of $\left( {a + b} \right)$ that is mentioned below.
Formula used:
${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab(a + b).............................(A)$
Now, we have to compare both real and imaginary roots of $x - iy$and the expression obtained after taking the cube of $a + ib$to get the values of $\dfrac{x}{a}$and $\dfrac{y}{b}$
Now, we have to put the values of $\dfrac{x}{a}$and $\dfrac{y}{b}$in the given expression $\dfrac{1}{{{a^2} + {b^2}}}\left( {\dfrac{x}{a} + \dfrac{y}{b}} \right)$to get the desired value.
Complete answer:
Step 1: First of all we have to taking cube both side of the given expression ${\left( {\overline z } \right)^{\dfrac{1}{3}}} = a + ib$
$ \Rightarrow \overline z = {(a + ib)^3}$
Now, use the formula of cube (A) that is mentioned in the solution hint.
$
\Rightarrow (x - iy) = {a^3} + {\left( {ib} \right)^3} + 3\left( a \right)\left( {ib} \right)\left( {a + ib} \right) \\
\Rightarrow (x - iy) = {a^3} + {i^3}{b^3} + 3{a^2}\left( {ib} \right) + 3a{\left( {ib} \right)^2} \\
$
As we know that ${i^2} = - 1$and ${i^3} = - i$
$
\Rightarrow (x - iy) = {a^3} - i{b^3} + 3{a^2}\left( {ib} \right) - 3a{b^2} \\
\Rightarrow (x - iy) = {a^3} - 3a{b^2} + i\left( {3{a^2}b - {b^3}} \right).......................(1) \\
$
Step 3: Now, we have to compare the both real and imaginary values of the expression (1) as obtained in the solution step 2.
$ \Rightarrow x = \left( {{a^3} - 3a{b^2}} \right)$and, $y = - \left( {\left( {3{a^2}b - {b^3}} \right)} \right)$
$ \Rightarrow \dfrac{x}{a} = \left( {{a^2} - 3{b^2}} \right)$and, $\dfrac{y}{b} = \left( {\left( { - 3{a^2} + {b^2}} \right)} \right)...............................(2)$
Step 4: Now, we have to the values of $\dfrac{x}{a}$and $\dfrac{y}{b}$from the expression (2) in the given expression$\dfrac{1}{{{a^2} + {b^2}}}\left( {\dfrac{x}{a} + \dfrac{y}{b}} \right)$
\[
\Rightarrow \dfrac{1}{{{a^2} + {b^2}}}\left( {\left( {{a^2} - 3{b^2}} \right) + \left( { - 3{a^2} + {b^2}} \right)} \right) \\
\Rightarrow \dfrac{1}{{{a^2} + {b^2}}}\left( {{a^2} - 3{a^2} + {b^2} - 3{b^2}} \right) \\
\]
Now, solving the expression as obtained just above,
\[
\Rightarrow \dfrac{1}{{{a^2} + {b^2}}}\left( { - 2{b^2} - 2{a^2}} \right) \\
\Rightarrow \dfrac{1}{{{a^2} + {b^2}}}\left\{ { - 2\left( {{a^2} + {b^2}} \right)} \right\} \\
\]
On eliminating the terms which can be eliminated,
\[ \Rightarrow - 2\]
Hence, we have obtained the value of $\dfrac{1}{{{a^2} + {b^2}}}\left( {\dfrac{x}{a} + \dfrac{y}{b}} \right) = - 2$. Therefore option (B) is correct.
Note:
It is necessary that we have to find the cube of the expression given in the question then we can compare the real and imaginary roots with the conjugate of z which is $\overline z = x - iy$ and where z is $ = x + iy$.
It is necessary that we have to find the value of $\dfrac{x}{a}$and $\dfrac{y}{b}$with the help of comparing the expression of terms x and y.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The largest tea producing country in the world is A class 10 social science CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE