
If z is a complex number such that $\left| z \right|\ge 2$ then the minimum value of $\left| z+\dfrac{1}{2} \right|$ is
\[\begin{align}
& \text{A}.\text{ is equal to }\dfrac{5}{2} \\
& \text{B}.\text{ lies in interval }\left( \text{1},\text{ 2} \right) \\
& \text{C}.\text{ is strictly greater than }\dfrac{5}{2} \\
& \text{D}.\text{ is strictly greater than }\dfrac{3}{2}\text{ but less than }\dfrac{5}{2} \\
\end{align}\]
Answer
591.9k+ views
Hint: To solve this question, we will use formula of addition and subtraction of two complex number which are given as:
\[\left| {{z}_{1}}+{{z}_{2}} \right|\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|\text{ and }\left| {{z}_{1}}-{{z}_{2}} \right|\ge \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|\]
Finally, we will substitute ${{z}_{1}}=z\text{ and }{{\text{z}}_{\text{2}}}=-\dfrac{1}{2}$ to get maximum and minimum value of $\left| z+\dfrac{1}{2} \right|$
Complete step-by-step answer:
Given that, $\left| z \right|\ge 2$
We have two formulas of add and subtraction of two complex number which are given as:
\[\left| {{z}_{1}}+{{z}_{2}} \right|\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|\text{ and }\left| {{z}_{1}}-{{z}_{2}} \right|\ge \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|\]
Let us assume the value ${{z}_{1}}=z$ and value of ${{\text{z}}_{\text{2}}}=-\dfrac{1}{2}$ as we have to calculate the value of $\left| z+\dfrac{1}{2} \right|$
Let \[\left| {{z}_{1}}-{{z}_{2}} \right|\ge \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Using equation (i) by putting ${{z}_{1}}=z\text{ and }{{\text{z}}_{\text{2}}}=-\dfrac{1}{2}$ we get:
\[\left| z-\left( \dfrac{-1}{2} \right) \right|\text{ }\ge \text{ }\left| \text{z} \right|-\left| -\dfrac{1}{2} \right|\]
Now, as value of $\left| z \right|\ge 2$
\[\Rightarrow \left| z \right|-\left| \dfrac{-1}{2} \right|\ge 2-\left| \dfrac{-1}{2} \right|\]
Also, as any value under mode comes out to be positive. So, $\left| \dfrac{-1}{2} \right|=+\dfrac{1}{2}$
Using this in above, we get:
\[\begin{align}
& \Rightarrow \left| \left( z \right)-\left( \dfrac{-1}{2} \right) \right|\ge 2-\dfrac{1}{2} \\
& \Rightarrow \left| \left( z \right)-\left( \dfrac{-1}{2} \right) \right|\ge \dfrac{2-1}{2} \\
\end{align}\]
Taking LCM on right hand side
\[\begin{align}
& \Rightarrow \left| z+\dfrac{1}{2} \right|\ge \dfrac{4-1}{2} \\
& \Rightarrow \left| z+\dfrac{1}{2} \right|\ge \dfrac{3}{2} \\
\end{align}\]
So, we get that the value of \[\left| z+\dfrac{1}{2} \right|\ge \dfrac{3}{2}\] consider \[\left| {{z}_{1}}+{{z}_{2}} \right|\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|\]
Let ${{z}_{1}}=z\text{ and }{{\text{z}}_{\text{2}}}=\dfrac{1}{2}$ in above, we get:
\[\left| z+\dfrac{1}{2} \right|\le \left| z \right|+\left| \dfrac{1}{2} \right|\]
Now, value of $\left| z \right|\ge 2$
\[\begin{align}
& \Rightarrow \left| z+\dfrac{1}{2} \right|\le 2+\dfrac{1}{2} \\
& \Rightarrow \left| z+\dfrac{1}{2} \right|\le \dfrac{5}{2} \\
\end{align}\]
So, the value of $\left| z+\dfrac{1}{2} \right|$ is greater than $\dfrac{3}{2}$ and less than $\dfrac{5}{2}$
So, the correct answer is “Option D”.
Note: Another way to get that $\left| {{z}_{2}} \right|=+\text{ positive}$ is, let \[z=x+y\text{ and }\left| z \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Now, we have \[\begin{align}
& {{z}_{2}}=-\dfrac{1}{2}\Rightarrow {{z}_{2}}=-\dfrac{1}{2}+0 \\
& \Rightarrow \left| {{z}_{2}} \right|=\sqrt{{{\left( -\dfrac{1}{2} \right)}^{2}}+{{\left( 0 \right)}^{2}}} \\
& \Rightarrow \left| {{z}_{2}} \right|=\dfrac{1}{2} \\
\end{align}\]
This above is obtained by using equation (ii) so, we can easily use $\left| {{z}_{2}} \right|=\dfrac{1}{2}$ to get the result. Hence, by this way we can avoid the confusion part that ${{z}_{2}}$ can be negative.
\[\left| {{z}_{1}}+{{z}_{2}} \right|\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|\text{ and }\left| {{z}_{1}}-{{z}_{2}} \right|\ge \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|\]
Finally, we will substitute ${{z}_{1}}=z\text{ and }{{\text{z}}_{\text{2}}}=-\dfrac{1}{2}$ to get maximum and minimum value of $\left| z+\dfrac{1}{2} \right|$
Complete step-by-step answer:
Given that, $\left| z \right|\ge 2$
We have two formulas of add and subtraction of two complex number which are given as:
\[\left| {{z}_{1}}+{{z}_{2}} \right|\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|\text{ and }\left| {{z}_{1}}-{{z}_{2}} \right|\ge \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|\]
Let us assume the value ${{z}_{1}}=z$ and value of ${{\text{z}}_{\text{2}}}=-\dfrac{1}{2}$ as we have to calculate the value of $\left| z+\dfrac{1}{2} \right|$
Let \[\left| {{z}_{1}}-{{z}_{2}} \right|\ge \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Using equation (i) by putting ${{z}_{1}}=z\text{ and }{{\text{z}}_{\text{2}}}=-\dfrac{1}{2}$ we get:
\[\left| z-\left( \dfrac{-1}{2} \right) \right|\text{ }\ge \text{ }\left| \text{z} \right|-\left| -\dfrac{1}{2} \right|\]
Now, as value of $\left| z \right|\ge 2$
\[\Rightarrow \left| z \right|-\left| \dfrac{-1}{2} \right|\ge 2-\left| \dfrac{-1}{2} \right|\]
Also, as any value under mode comes out to be positive. So, $\left| \dfrac{-1}{2} \right|=+\dfrac{1}{2}$
Using this in above, we get:
\[\begin{align}
& \Rightarrow \left| \left( z \right)-\left( \dfrac{-1}{2} \right) \right|\ge 2-\dfrac{1}{2} \\
& \Rightarrow \left| \left( z \right)-\left( \dfrac{-1}{2} \right) \right|\ge \dfrac{2-1}{2} \\
\end{align}\]
Taking LCM on right hand side
\[\begin{align}
& \Rightarrow \left| z+\dfrac{1}{2} \right|\ge \dfrac{4-1}{2} \\
& \Rightarrow \left| z+\dfrac{1}{2} \right|\ge \dfrac{3}{2} \\
\end{align}\]
So, we get that the value of \[\left| z+\dfrac{1}{2} \right|\ge \dfrac{3}{2}\] consider \[\left| {{z}_{1}}+{{z}_{2}} \right|\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|\]
Let ${{z}_{1}}=z\text{ and }{{\text{z}}_{\text{2}}}=\dfrac{1}{2}$ in above, we get:
\[\left| z+\dfrac{1}{2} \right|\le \left| z \right|+\left| \dfrac{1}{2} \right|\]
Now, value of $\left| z \right|\ge 2$
\[\begin{align}
& \Rightarrow \left| z+\dfrac{1}{2} \right|\le 2+\dfrac{1}{2} \\
& \Rightarrow \left| z+\dfrac{1}{2} \right|\le \dfrac{5}{2} \\
\end{align}\]
So, the value of $\left| z+\dfrac{1}{2} \right|$ is greater than $\dfrac{3}{2}$ and less than $\dfrac{5}{2}$
So, the correct answer is “Option D”.
Note: Another way to get that $\left| {{z}_{2}} \right|=+\text{ positive}$ is, let \[z=x+y\text{ and }\left| z \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Now, we have \[\begin{align}
& {{z}_{2}}=-\dfrac{1}{2}\Rightarrow {{z}_{2}}=-\dfrac{1}{2}+0 \\
& \Rightarrow \left| {{z}_{2}} \right|=\sqrt{{{\left( -\dfrac{1}{2} \right)}^{2}}+{{\left( 0 \right)}^{2}}} \\
& \Rightarrow \left| {{z}_{2}} \right|=\dfrac{1}{2} \\
\end{align}\]
This above is obtained by using equation (ii) so, we can easily use $\left| {{z}_{2}} \right|=\dfrac{1}{2}$ to get the result. Hence, by this way we can avoid the confusion part that ${{z}_{2}}$ can be negative.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

