
If z is a complex number such that $\left| z \right|\ge 2$ then the minimum value of $\left| z+\dfrac{1}{2} \right|$ is
\[\begin{align}
& \text{A}.\text{ is equal to }\dfrac{5}{2} \\
& \text{B}.\text{ lies in interval }\left( \text{1},\text{ 2} \right) \\
& \text{C}.\text{ is strictly greater than }\dfrac{5}{2} \\
& \text{D}.\text{ is strictly greater than }\dfrac{3}{2}\text{ but less than }\dfrac{5}{2} \\
\end{align}\]
Answer
577.8k+ views
Hint: To solve this question, we will use formula of addition and subtraction of two complex number which are given as:
\[\left| {{z}_{1}}+{{z}_{2}} \right|\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|\text{ and }\left| {{z}_{1}}-{{z}_{2}} \right|\ge \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|\]
Finally, we will substitute ${{z}_{1}}=z\text{ and }{{\text{z}}_{\text{2}}}=-\dfrac{1}{2}$ to get maximum and minimum value of $\left| z+\dfrac{1}{2} \right|$
Complete step-by-step answer:
Given that, $\left| z \right|\ge 2$
We have two formulas of add and subtraction of two complex number which are given as:
\[\left| {{z}_{1}}+{{z}_{2}} \right|\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|\text{ and }\left| {{z}_{1}}-{{z}_{2}} \right|\ge \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|\]
Let us assume the value ${{z}_{1}}=z$ and value of ${{\text{z}}_{\text{2}}}=-\dfrac{1}{2}$ as we have to calculate the value of $\left| z+\dfrac{1}{2} \right|$
Let \[\left| {{z}_{1}}-{{z}_{2}} \right|\ge \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Using equation (i) by putting ${{z}_{1}}=z\text{ and }{{\text{z}}_{\text{2}}}=-\dfrac{1}{2}$ we get:
\[\left| z-\left( \dfrac{-1}{2} \right) \right|\text{ }\ge \text{ }\left| \text{z} \right|-\left| -\dfrac{1}{2} \right|\]
Now, as value of $\left| z \right|\ge 2$
\[\Rightarrow \left| z \right|-\left| \dfrac{-1}{2} \right|\ge 2-\left| \dfrac{-1}{2} \right|\]
Also, as any value under mode comes out to be positive. So, $\left| \dfrac{-1}{2} \right|=+\dfrac{1}{2}$
Using this in above, we get:
\[\begin{align}
& \Rightarrow \left| \left( z \right)-\left( \dfrac{-1}{2} \right) \right|\ge 2-\dfrac{1}{2} \\
& \Rightarrow \left| \left( z \right)-\left( \dfrac{-1}{2} \right) \right|\ge \dfrac{2-1}{2} \\
\end{align}\]
Taking LCM on right hand side
\[\begin{align}
& \Rightarrow \left| z+\dfrac{1}{2} \right|\ge \dfrac{4-1}{2} \\
& \Rightarrow \left| z+\dfrac{1}{2} \right|\ge \dfrac{3}{2} \\
\end{align}\]
So, we get that the value of \[\left| z+\dfrac{1}{2} \right|\ge \dfrac{3}{2}\] consider \[\left| {{z}_{1}}+{{z}_{2}} \right|\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|\]
Let ${{z}_{1}}=z\text{ and }{{\text{z}}_{\text{2}}}=\dfrac{1}{2}$ in above, we get:
\[\left| z+\dfrac{1}{2} \right|\le \left| z \right|+\left| \dfrac{1}{2} \right|\]
Now, value of $\left| z \right|\ge 2$
\[\begin{align}
& \Rightarrow \left| z+\dfrac{1}{2} \right|\le 2+\dfrac{1}{2} \\
& \Rightarrow \left| z+\dfrac{1}{2} \right|\le \dfrac{5}{2} \\
\end{align}\]
So, the value of $\left| z+\dfrac{1}{2} \right|$ is greater than $\dfrac{3}{2}$ and less than $\dfrac{5}{2}$
So, the correct answer is “Option D”.
Note: Another way to get that $\left| {{z}_{2}} \right|=+\text{ positive}$ is, let \[z=x+y\text{ and }\left| z \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Now, we have \[\begin{align}
& {{z}_{2}}=-\dfrac{1}{2}\Rightarrow {{z}_{2}}=-\dfrac{1}{2}+0 \\
& \Rightarrow \left| {{z}_{2}} \right|=\sqrt{{{\left( -\dfrac{1}{2} \right)}^{2}}+{{\left( 0 \right)}^{2}}} \\
& \Rightarrow \left| {{z}_{2}} \right|=\dfrac{1}{2} \\
\end{align}\]
This above is obtained by using equation (ii) so, we can easily use $\left| {{z}_{2}} \right|=\dfrac{1}{2}$ to get the result. Hence, by this way we can avoid the confusion part that ${{z}_{2}}$ can be negative.
\[\left| {{z}_{1}}+{{z}_{2}} \right|\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|\text{ and }\left| {{z}_{1}}-{{z}_{2}} \right|\ge \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|\]
Finally, we will substitute ${{z}_{1}}=z\text{ and }{{\text{z}}_{\text{2}}}=-\dfrac{1}{2}$ to get maximum and minimum value of $\left| z+\dfrac{1}{2} \right|$
Complete step-by-step answer:
Given that, $\left| z \right|\ge 2$
We have two formulas of add and subtraction of two complex number which are given as:
\[\left| {{z}_{1}}+{{z}_{2}} \right|\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|\text{ and }\left| {{z}_{1}}-{{z}_{2}} \right|\ge \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|\]
Let us assume the value ${{z}_{1}}=z$ and value of ${{\text{z}}_{\text{2}}}=-\dfrac{1}{2}$ as we have to calculate the value of $\left| z+\dfrac{1}{2} \right|$
Let \[\left| {{z}_{1}}-{{z}_{2}} \right|\ge \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Using equation (i) by putting ${{z}_{1}}=z\text{ and }{{\text{z}}_{\text{2}}}=-\dfrac{1}{2}$ we get:
\[\left| z-\left( \dfrac{-1}{2} \right) \right|\text{ }\ge \text{ }\left| \text{z} \right|-\left| -\dfrac{1}{2} \right|\]
Now, as value of $\left| z \right|\ge 2$
\[\Rightarrow \left| z \right|-\left| \dfrac{-1}{2} \right|\ge 2-\left| \dfrac{-1}{2} \right|\]
Also, as any value under mode comes out to be positive. So, $\left| \dfrac{-1}{2} \right|=+\dfrac{1}{2}$
Using this in above, we get:
\[\begin{align}
& \Rightarrow \left| \left( z \right)-\left( \dfrac{-1}{2} \right) \right|\ge 2-\dfrac{1}{2} \\
& \Rightarrow \left| \left( z \right)-\left( \dfrac{-1}{2} \right) \right|\ge \dfrac{2-1}{2} \\
\end{align}\]
Taking LCM on right hand side
\[\begin{align}
& \Rightarrow \left| z+\dfrac{1}{2} \right|\ge \dfrac{4-1}{2} \\
& \Rightarrow \left| z+\dfrac{1}{2} \right|\ge \dfrac{3}{2} \\
\end{align}\]
So, we get that the value of \[\left| z+\dfrac{1}{2} \right|\ge \dfrac{3}{2}\] consider \[\left| {{z}_{1}}+{{z}_{2}} \right|\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|\]
Let ${{z}_{1}}=z\text{ and }{{\text{z}}_{\text{2}}}=\dfrac{1}{2}$ in above, we get:
\[\left| z+\dfrac{1}{2} \right|\le \left| z \right|+\left| \dfrac{1}{2} \right|\]
Now, value of $\left| z \right|\ge 2$
\[\begin{align}
& \Rightarrow \left| z+\dfrac{1}{2} \right|\le 2+\dfrac{1}{2} \\
& \Rightarrow \left| z+\dfrac{1}{2} \right|\le \dfrac{5}{2} \\
\end{align}\]
So, the value of $\left| z+\dfrac{1}{2} \right|$ is greater than $\dfrac{3}{2}$ and less than $\dfrac{5}{2}$
So, the correct answer is “Option D”.
Note: Another way to get that $\left| {{z}_{2}} \right|=+\text{ positive}$ is, let \[z=x+y\text{ and }\left| z \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Now, we have \[\begin{align}
& {{z}_{2}}=-\dfrac{1}{2}\Rightarrow {{z}_{2}}=-\dfrac{1}{2}+0 \\
& \Rightarrow \left| {{z}_{2}} \right|=\sqrt{{{\left( -\dfrac{1}{2} \right)}^{2}}+{{\left( 0 \right)}^{2}}} \\
& \Rightarrow \left| {{z}_{2}} \right|=\dfrac{1}{2} \\
\end{align}\]
This above is obtained by using equation (ii) so, we can easily use $\left| {{z}_{2}} \right|=\dfrac{1}{2}$ to get the result. Hence, by this way we can avoid the confusion part that ${{z}_{2}}$ can be negative.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

