Answer

Verified

349.8k+ views

**Hint:**First of all we should know that a regular polygon is a polygon that has equal sides and equal angles. In this question we should know that we have complex numbers. We can assume that ${z_1} = x + iy$, then the value of $\overline {{z_1}} $ will be $x - iy$. We know that the angle between two corresponding vertices is $\dfrac{{2\pi }}{n}$.

**Complete step by step solution:**

Let us assume that ${z_1}$ be the first vertex of the polygon in the first quadrant i.e. ${z_1} = x + iy$, then the $\overline {{z_1}} $ be in the fourth quadrant i.e. $\overline {{z_1}} = x - iy$.

In the above figure we have points in the first quadrant as $(x,y)$ and in the fourth quadrant the coordinates are $(x, - y)$.

Now we have assumed that the angle at the centre in the first quadrant is $\theta $.

So we can write from the question that $\tan \theta = \sqrt 2 - 1$. We know that the angle between two corresponding vertices is $\dfrac{{2\pi }}{n}$. From this we can write $\dfrac{{2\pi }}{n} = 2\theta $, because $\dfrac{\pi }{n} = \theta $ from the above figure.

By multiplying with $\tan $ on both the sides, it gives us $\tan \dfrac{{2\pi }}{n} = \tan 2\theta $. On simplifying this we can write $\tan \dfrac{{2\pi }}{n} = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$.

By putting the value of $\tan \theta = \sqrt 2 - 1$in the right hand side of the equation, we have$\dfrac{{2(\sqrt 2 - 1)}}{{1 - {{(\sqrt 2 - 1)}^2}}}$.

We will solve it now: $\dfrac{{2\sqrt 2 - 2}}{{1 - 2 - 1 + 2\sqrt 2 }} \Rightarrow \dfrac{{2\sqrt 2 - 2}}{{2\sqrt 2 - 2}}$. It gives us the value $\tan \dfrac{{2\pi }}{n} = 1$.

Now we know that the value of $\tan \dfrac{\pi }{4}$ is $1$, so we can write it as $\tan \dfrac{{2\pi }}{n} = \tan \dfrac{\pi }{4} = 1$.

Therefore we can write by eliminating tan, $\dfrac{{2\pi }}{n} = \dfrac{\pi }{4}$. It gives us the value of $n = 4 \times 2 = 8$.

**Hence the required answer is (D) $8$.**

**Note:**

We should know that we have used the trigonometric identity in the above question i.e. $\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$. We have also applied the algebraic identity of difference square formula which is ${(a - b)^2} = {a^2} + {b^2} - 2ab$. Before solving this kind of question we should have a clear knowledge of the trigonometric identities and their functions.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

One cusec is equal to how many liters class 8 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How many crores make 10 million class 7 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE