
If $y=\sec \left( {{\tan }^{-1}}x \right)$, then find the value of $\dfrac{dy}{dx}$ .
(a) $\dfrac{x}{\sqrt{1+{{x}^{2}}}}$
(b) $x\sqrt{1+{{x}^{2}}}$
(c) $\sqrt{1+{{x}^{2}}}$
(d) $\dfrac{1}{\sqrt{1+{{x}^{2}}}}$
(e) $\dfrac{x}{1+{{x}^{2}}}$
Answer
606.9k+ views
Hint: Consider ‘y’ as composite function of f(g(x)) where f(x) is $\sec x$ and g(x) is ${{\tan }^{-1}}x$ and then use the identity
$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right)\times {{g}^{'}}\left( x \right)$
Where ${{f}^{'}}\left( g\left( x \right) \right)$ is differentiation of f(x) keeping g(x) as it is and $g'(x)$ means differentiating g(x) irrespective of f(x).
“Complete step-by-step answer:”
We are given with the function
$y=\sec \left( {{\tan }^{-1}}x \right)$
Now we are asked to find $\left( \dfrac{dy}{dx} \right)$ which means we have to differentiate ‘y’ with respect to ‘x’.
Let us consider two functions f(x) and g(x) where f(x) be $\sec x$ and g(x) be ${{\tan }^{-1}}x$.
So we can write,
$y=\sec \left( {{\tan }^{-1}}x \right)$ as $y=f\left( g\left( x \right) \right)$
Now we have to differentiate ‘y’ with respect to ‘x’ using the identity,
$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)=f'\left( g\left( x \right) \right)\times g'\left( x \right)$
Here \[f'\left( g\left( x \right) \right)\] means differentiating f(x) keeping g(x) constant and here $g'\left( x \right)$ means differentiating g(x) independently irrespective of f(x).
So by using the formula which are,
$\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x$, $\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{1+{{x}^{2}}}$
We get,
\[~\dfrac{dy}{dx}=\sec \left( {{\tan }^{-1}}x \right).\tan \left( {{\tan }^{-1}}x \right).\dfrac{1}{\left( 1+{{x}^{2}} \right)}..........(i)\]
Now here we can use the identity,
$\begin{align}
& \tan \left( {{\tan }^{-1}}x \right)=x \\
& \sec \left( {{\tan }^{-1}}x \right)=\sqrt{1+{{x}^{2}}} \\
\end{align}$
By using these identities, equation (i) can be written as
$\dfrac{dy}{dx}=\sqrt{1+{{x}^{2}}}.x.\dfrac{1}{1+{{x}^{2}}}$
By rationalizing the above equation, we get
$\Rightarrow \dfrac{dy}{dx}=\dfrac{x}{\sqrt{1+{{x}^{2}}}}$
Therefore this is the required differentiation.
Hence the correct answer is option (a).
Note: There is alternative way of solving the problem is by converting $y=\sec \left( {{\tan }^{-1}}x \right)$ as $y=\sqrt{1+{{x}^{2}}}$ and using $f\left( x \right)=\sqrt{x}$ and $g\left( x \right)=\left( 1+{{x}^{2}} \right)$ . Thus solving same by the identity
$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right)\times {{g}^{'}}\left( x \right)$ to get desired result.
$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right)\times {{g}^{'}}\left( x \right)$
Where ${{f}^{'}}\left( g\left( x \right) \right)$ is differentiation of f(x) keeping g(x) as it is and $g'(x)$ means differentiating g(x) irrespective of f(x).
“Complete step-by-step answer:”
We are given with the function
$y=\sec \left( {{\tan }^{-1}}x \right)$
Now we are asked to find $\left( \dfrac{dy}{dx} \right)$ which means we have to differentiate ‘y’ with respect to ‘x’.
Let us consider two functions f(x) and g(x) where f(x) be $\sec x$ and g(x) be ${{\tan }^{-1}}x$.
So we can write,
$y=\sec \left( {{\tan }^{-1}}x \right)$ as $y=f\left( g\left( x \right) \right)$
Now we have to differentiate ‘y’ with respect to ‘x’ using the identity,
$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)=f'\left( g\left( x \right) \right)\times g'\left( x \right)$
Here \[f'\left( g\left( x \right) \right)\] means differentiating f(x) keeping g(x) constant and here $g'\left( x \right)$ means differentiating g(x) independently irrespective of f(x).
So by using the formula which are,
$\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x$, $\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{1+{{x}^{2}}}$
We get,
\[~\dfrac{dy}{dx}=\sec \left( {{\tan }^{-1}}x \right).\tan \left( {{\tan }^{-1}}x \right).\dfrac{1}{\left( 1+{{x}^{2}} \right)}..........(i)\]
Now here we can use the identity,
$\begin{align}
& \tan \left( {{\tan }^{-1}}x \right)=x \\
& \sec \left( {{\tan }^{-1}}x \right)=\sqrt{1+{{x}^{2}}} \\
\end{align}$
By using these identities, equation (i) can be written as
$\dfrac{dy}{dx}=\sqrt{1+{{x}^{2}}}.x.\dfrac{1}{1+{{x}^{2}}}$
By rationalizing the above equation, we get
$\Rightarrow \dfrac{dy}{dx}=\dfrac{x}{\sqrt{1+{{x}^{2}}}}$
Therefore this is the required differentiation.
Hence the correct answer is option (a).
Note: There is alternative way of solving the problem is by converting $y=\sec \left( {{\tan }^{-1}}x \right)$ as $y=\sqrt{1+{{x}^{2}}}$ and using $f\left( x \right)=\sqrt{x}$ and $g\left( x \right)=\left( 1+{{x}^{2}} \right)$ . Thus solving same by the identity
$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right)\times {{g}^{'}}\left( x \right)$ to get desired result.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

