
If $y = \sin (2x)$ , then $\dfrac{{dy}}{{dx}}$ is equal to
Choose the correct option from the following options:
A. $2\cos (2x)$
B. $2\cos (x)$
C. $2\sin (x)$
D. $2\sin (2x)$
Answer
534.3k+ views
Hint:For solving this particular question we must know that Differentiation of trigonometric function sine of variable $x$ is equal to cosine of variable $x$ , and differentiation of $\sin ax = a\cos ax$ where $a$ is any constant and $x$ is the variable .
Complete solution step by step:
It is given it the question that ,
\[y = \sin 2x\] (given)
Now , differentiate on both sides with respect to $x$ , we will get ,
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(\sin 2x)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \cos (2x).2$ (since differentiation of $\sin ax = a\cos ax$ )
$ = 2\cos 2x$
Therefore , $\dfrac{{dy}}{{dx}} = 2\cos 2x$ .
And we can say that option A is the correct option.
Formula used: For solving this particular question we used ,
$\dfrac{d}{{dx}}(\sin ax) = a\cos ax$ ,where $a$is any constant and $x$ is the variable .
Differentiation of trigonometric function sine of variable $x$ is equal to cosine of variable $x$ .
Additional Information:
Differentiation is the essence of Calculus. A derivative is defined because the instantaneous rate of change in function supported one in every of its variables. it's just like finding the slope of a tangent to the function at some extent. we've got following rules in differentiation ,
• Sum and Difference rule that claims (u(x) ± v(x))’=u'(x)±v'(x)
• Product rule that says (u(x) × v(x))’=u′(x)×v(x)+u(x)×v′(x)
• Quotient Rule that claims (u(x)/v(x))’ =(u′(x)×v(x)−u(x)×v′(x))/(v(x))2
• Chain Rule that says dy(u(x))/dx = dy/du × du/dx
Note: The differentiation of a function $f(x)$ is represented as $f'(x)$ . If $f(x) = y$, then $f'(x) =\dfrac{{dy}}{{dx}}$ , which means $y$ is differentiated with respect to $x$ Differentiation of trigonometric function sine of variable $x$ is equal to cosine of variable $x$ , and differentiation of $\sin ax = a\cos ax$ where $a$ is any constant and $x$ is the variable
Complete solution step by step:
It is given it the question that ,
\[y = \sin 2x\] (given)
Now , differentiate on both sides with respect to $x$ , we will get ,
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(\sin 2x)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \cos (2x).2$ (since differentiation of $\sin ax = a\cos ax$ )
$ = 2\cos 2x$
Therefore , $\dfrac{{dy}}{{dx}} = 2\cos 2x$ .
And we can say that option A is the correct option.
Formula used: For solving this particular question we used ,
$\dfrac{d}{{dx}}(\sin ax) = a\cos ax$ ,where $a$is any constant and $x$ is the variable .
Differentiation of trigonometric function sine of variable $x$ is equal to cosine of variable $x$ .
Additional Information:
Differentiation is the essence of Calculus. A derivative is defined because the instantaneous rate of change in function supported one in every of its variables. it's just like finding the slope of a tangent to the function at some extent. we've got following rules in differentiation ,
• Sum and Difference rule that claims (u(x) ± v(x))’=u'(x)±v'(x)
• Product rule that says (u(x) × v(x))’=u′(x)×v(x)+u(x)×v′(x)
• Quotient Rule that claims (u(x)/v(x))’ =(u′(x)×v(x)−u(x)×v′(x))/(v(x))2
• Chain Rule that says dy(u(x))/dx = dy/du × du/dx
Note: The differentiation of a function $f(x)$ is represented as $f'(x)$ . If $f(x) = y$, then $f'(x) =\dfrac{{dy}}{{dx}}$ , which means $y$ is differentiated with respect to $x$ Differentiation of trigonometric function sine of variable $x$ is equal to cosine of variable $x$ , and differentiation of $\sin ax = a\cos ax$ where $a$ is any constant and $x$ is the variable
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

