
If $ y = \ln \sqrt {\tan x} $ then the value of $ \dfrac{{dy}}{{dx}} $ at $ x = \dfrac{\pi }{4} $ is-
A. $ \infty $
B. 1
C. 0
D. $ \dfrac{1}{2} $
Answer
555.6k+ views
Hint: Here the function that is given to us is an impure function consisting of trigonometric function, the under root function and logarithmic function. To find the derivative with respect to ‘x’ we have to use the chain rule. We will be using the basic differentiation formulas here as listed below.
a) If a function ‘f’ is a mixture of various function say $ f(x) = {g_1}({g_2}({g_3}(...{g_n}(x)...))) $ then the chain rule says that the differentiation of ‘f’ with respect to ‘x’ is \[{f^1}(x) = \dfrac{{df(x)}}{{dx}} = \dfrac{{d\left[ {{g_1}({g_2}({g_3}(...{g_n}(x)...)))} \right]}}{{d\left[ {{g_2}({g_3}(...{g_n}(x)...))} \right]}} \times \dfrac{{d\left[ {{g_2}({g_3}(...{g_n}(x)...))} \right]}}{{d\left[ {{g_3}(...{g_n}(x)...)} \right]}} \times \dfrac{{d\left[ {{g_3}(...{g_n}(x)...)} \right]}}{{d\left[ {(...{g_n}(x)...} \right]}} \times ... \times \dfrac{{d\left[ {{g_n}(x)} \right]}}{{dx}}\]
b) The basic differentiation formulas are,
$ \dfrac{{d\tan x}}{{dx}} = {\sec ^2}x $
$ \dfrac{{d\sqrt x }}{{dx}} = \dfrac{1}{{2\sqrt x }} $
$ \dfrac{{d\ln x}}{{dx}} = \dfrac{1}{x} $
c) From trigonometry we have,
$ \dfrac{1}{{\tan x}} = \dfrac{{\cos x}}{{\sin x}} $
$ \sec x = \dfrac{1}{{\cos x}} $
\[2\sin x\cos x = \sin 2x\]
\[\csc \left( {\dfrac{\pi }{2}} \right) = 1\]
Complete step-by-step answer:
Here the function is given as $ y = \ln \sqrt {\tan x} $
So, we have the formula $ \dfrac{{d\ln x}}{{dx}} = \dfrac{1}{x} $
As here the function is $ \ln \sqrt {\tan x} $ in place of ‘x’ we have to use the chain rule.
So we will write the differentiation as
$ y = \ln \sqrt {\tan x} $
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\ln \sqrt {\tan x} } \right) $
Applying chain rule:
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{d\sqrt {\tan x} }}\left( {\ln \sqrt {\tan x} } \right) \times \dfrac{{d\sqrt {\tan x} }}{{dx}} $
As we have, $ \dfrac{{d\ln x}}{{dx}} = \dfrac{1}{x} $ so we can write, $ \dfrac{{d\ln \sqrt {\tan x} }}{{d\sqrt {\tan x} }} = \dfrac{1}{{\sqrt {\tan x} }} $
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\sqrt {\tan x} }} \times \dfrac{{d\sqrt {\tan x} }}{{dx}} $
Applying chain rule:
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\sqrt {\tan x} }} \times \dfrac{{d\sqrt {\tan x} }}{{d\tan x}} \times \dfrac{{d\tan x}}{{dx}} $
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\sqrt {\tan x} }} \times \dfrac{1}{{2\sqrt {\tan x} }} \times \dfrac{{d\tan x}}{{dx}} $
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\sqrt {\tan x} }} \times \dfrac{1}{{2\sqrt {\tan x} }} \times {\sec ^2}x $
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{2\tan x}} \times {\sec ^2}x $
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\cos x}}{{2\sin x}} \times \dfrac{1}{{{{\cos }^2}x}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sin x}} \times \dfrac{1}{{\cos x}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sin x\cos x}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\sin 2x}} = \csc 2x\]
Now we are asked to find the value when $ x = \dfrac{\pi }{4} $
Now we have,
\[{\left[ {\dfrac{{dy}}{{dx}}} \right]_{\dfrac{\pi }{4}}} = \csc \left( {2 \times \dfrac{\pi }{4}} \right) = \csc \dfrac{\pi }{2} = 1\]
Hence the final answer is 1.
So, the correct answer is “1”.
Note: The chain rule is a simple yet long process to compute the differentiation of impure functions. Whenever you see a function not in pure form always use this formula for chain rule stated in the formula section. Make sure you do it step by step as small mistakes can ruin the whole differentiation process.
a) If a function ‘f’ is a mixture of various function say $ f(x) = {g_1}({g_2}({g_3}(...{g_n}(x)...))) $ then the chain rule says that the differentiation of ‘f’ with respect to ‘x’ is \[{f^1}(x) = \dfrac{{df(x)}}{{dx}} = \dfrac{{d\left[ {{g_1}({g_2}({g_3}(...{g_n}(x)...)))} \right]}}{{d\left[ {{g_2}({g_3}(...{g_n}(x)...))} \right]}} \times \dfrac{{d\left[ {{g_2}({g_3}(...{g_n}(x)...))} \right]}}{{d\left[ {{g_3}(...{g_n}(x)...)} \right]}} \times \dfrac{{d\left[ {{g_3}(...{g_n}(x)...)} \right]}}{{d\left[ {(...{g_n}(x)...} \right]}} \times ... \times \dfrac{{d\left[ {{g_n}(x)} \right]}}{{dx}}\]
b) The basic differentiation formulas are,
$ \dfrac{{d\tan x}}{{dx}} = {\sec ^2}x $
$ \dfrac{{d\sqrt x }}{{dx}} = \dfrac{1}{{2\sqrt x }} $
$ \dfrac{{d\ln x}}{{dx}} = \dfrac{1}{x} $
c) From trigonometry we have,
$ \dfrac{1}{{\tan x}} = \dfrac{{\cos x}}{{\sin x}} $
$ \sec x = \dfrac{1}{{\cos x}} $
\[2\sin x\cos x = \sin 2x\]
\[\csc \left( {\dfrac{\pi }{2}} \right) = 1\]
Complete step-by-step answer:
Here the function is given as $ y = \ln \sqrt {\tan x} $
So, we have the formula $ \dfrac{{d\ln x}}{{dx}} = \dfrac{1}{x} $
As here the function is $ \ln \sqrt {\tan x} $ in place of ‘x’ we have to use the chain rule.
So we will write the differentiation as
$ y = \ln \sqrt {\tan x} $
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\ln \sqrt {\tan x} } \right) $
Applying chain rule:
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{d\sqrt {\tan x} }}\left( {\ln \sqrt {\tan x} } \right) \times \dfrac{{d\sqrt {\tan x} }}{{dx}} $
As we have, $ \dfrac{{d\ln x}}{{dx}} = \dfrac{1}{x} $ so we can write, $ \dfrac{{d\ln \sqrt {\tan x} }}{{d\sqrt {\tan x} }} = \dfrac{1}{{\sqrt {\tan x} }} $
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\sqrt {\tan x} }} \times \dfrac{{d\sqrt {\tan x} }}{{dx}} $
Applying chain rule:
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\sqrt {\tan x} }} \times \dfrac{{d\sqrt {\tan x} }}{{d\tan x}} \times \dfrac{{d\tan x}}{{dx}} $
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\sqrt {\tan x} }} \times \dfrac{1}{{2\sqrt {\tan x} }} \times \dfrac{{d\tan x}}{{dx}} $
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\sqrt {\tan x} }} \times \dfrac{1}{{2\sqrt {\tan x} }} \times {\sec ^2}x $
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{2\tan x}} \times {\sec ^2}x $
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\cos x}}{{2\sin x}} \times \dfrac{1}{{{{\cos }^2}x}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sin x}} \times \dfrac{1}{{\cos x}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sin x\cos x}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\sin 2x}} = \csc 2x\]
Now we are asked to find the value when $ x = \dfrac{\pi }{4} $
Now we have,
\[{\left[ {\dfrac{{dy}}{{dx}}} \right]_{\dfrac{\pi }{4}}} = \csc \left( {2 \times \dfrac{\pi }{4}} \right) = \csc \dfrac{\pi }{2} = 1\]
Hence the final answer is 1.
So, the correct answer is “1”.
Note: The chain rule is a simple yet long process to compute the differentiation of impure functions. Whenever you see a function not in pure form always use this formula for chain rule stated in the formula section. Make sure you do it step by step as small mistakes can ruin the whole differentiation process.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

