
If y is a function of x defined by ${a^{x + y}} = {a^x} + {a^y}$ where a is a real constant (a>1) then the domain of y(x) is
A) $\left( {0, + \infty } \right)$
B) $\left( { - \infty ,0} \right)$
C) $\left( { - 1, + \infty } \right)$
D) $\left( { - \infty ,1} \right)$
Answer
520.8k+ views
Hint: To find the domain of ${a^{x + y}} = {a^x} + {a^y}$, first of all, simplify the function. Then we will take log on both sides and as we know that logarithm of a negative number is not possible, we will take the value of log greater than 0 and find the domain.
Complete step by step solution:
In this question, we are given that y is a function of x and is defined by ${a^{x + y}} = {a^x} + {a^y}$ and we need to find the domain of the function y(x).
Given: ${a^{x + y}} = {a^x} + {a^y}$
First of all, let us see the definition of range.
The domain of a function is the set of all possible input values that produce some output value range.
To find the domain of the given function, we need to simplify it further.
$ \Rightarrow {a^{x + y}} = {a^x} + {a^y}$- - - - - -(1)
Now, we know the property that when two numbers having same base are multiplied, we add their powers. So we can write
${a^{x + y}} = {a^x} \cdot {a^y}$
Therefore, equation (1) becomes
$ \Rightarrow {a^x} \cdot {a^y} = {a^x} + {a^y}$
Now, divide both LHS and RHS with ${a^x} \cdot {a^y}$, we get
\[
\Rightarrow \dfrac{{{a^x} \cdot {a^y}}}{{{a^x} \cdot {a^y}}} = \dfrac{{{a^x} + {a^y}}}{{{a^x} \cdot {a^y}}} \\
\Rightarrow 1 = \dfrac{1}{{{a^y}}} + \dfrac{1}{{{a^x}}} \\
\]
Now, we can write the inverse of any term as $\dfrac{1}{x} = {x^{ - 1}}$. Therefore,
\[
\Rightarrow 1 = {a^{ - x}} + {a^{ - y}} \\
\Rightarrow {a^{ - y}} = 1 - {a^{ - x}} \\
\]
Now, taking log with base a on both sides, we get
\[
\Rightarrow {\log _a}{a^{ - y}} = {\log _a}\left( {1 - {a^{ - x}}} \right) \\
\Rightarrow - y{\log _a}a = {\log _a}\left( {1 - {a^{ - x}}} \right) \\
\]
Now, we know that value of ${\log _a}a = 1$. Therefore, we get
\[
\Rightarrow - y = {\log _a}\left( {1 - {a^{ - x}}} \right) \\
\Rightarrow y = - {\log _a}\left( {1 - {a^{ - x}}} \right) \\
\]
Therefore,
\[
\Rightarrow 1 - {a^{ - x}} > 0 \\
\Rightarrow {a^{ - x}} < 1 \\
\Rightarrow {a^x} > 1 \\
\Rightarrow x > 0 \\
\]
Hence, the values can be anything greater than 0 to $\infty $.
Therefore, the domain of $y\left( x \right)$ is $\left( {0, + \infty } \right)$. So, our correct option is option (A).
Note:
Note that here we have taken \[1 - {a^{ - x}} > 0\] because, logarithm of a negative number is not possible and hence the value of \[1 - {a^{ - x}}\] must be greater than 0.
Other important point is that we have taken $x > 0$ for ${a^x} > 1$ as we know that ${a^x}$ will be equal to 1 only when $x = 0$, but here ${a^x} > 1$ and so the value of x cannot be 0 and hence, $x > 0$.
Complete step by step solution:
In this question, we are given that y is a function of x and is defined by ${a^{x + y}} = {a^x} + {a^y}$ and we need to find the domain of the function y(x).
Given: ${a^{x + y}} = {a^x} + {a^y}$
First of all, let us see the definition of range.
The domain of a function is the set of all possible input values that produce some output value range.
To find the domain of the given function, we need to simplify it further.
$ \Rightarrow {a^{x + y}} = {a^x} + {a^y}$- - - - - -(1)
Now, we know the property that when two numbers having same base are multiplied, we add their powers. So we can write
${a^{x + y}} = {a^x} \cdot {a^y}$
Therefore, equation (1) becomes
$ \Rightarrow {a^x} \cdot {a^y} = {a^x} + {a^y}$
Now, divide both LHS and RHS with ${a^x} \cdot {a^y}$, we get
\[
\Rightarrow \dfrac{{{a^x} \cdot {a^y}}}{{{a^x} \cdot {a^y}}} = \dfrac{{{a^x} + {a^y}}}{{{a^x} \cdot {a^y}}} \\
\Rightarrow 1 = \dfrac{1}{{{a^y}}} + \dfrac{1}{{{a^x}}} \\
\]
Now, we can write the inverse of any term as $\dfrac{1}{x} = {x^{ - 1}}$. Therefore,
\[
\Rightarrow 1 = {a^{ - x}} + {a^{ - y}} \\
\Rightarrow {a^{ - y}} = 1 - {a^{ - x}} \\
\]
Now, taking log with base a on both sides, we get
\[
\Rightarrow {\log _a}{a^{ - y}} = {\log _a}\left( {1 - {a^{ - x}}} \right) \\
\Rightarrow - y{\log _a}a = {\log _a}\left( {1 - {a^{ - x}}} \right) \\
\]
Now, we know that value of ${\log _a}a = 1$. Therefore, we get
\[
\Rightarrow - y = {\log _a}\left( {1 - {a^{ - x}}} \right) \\
\Rightarrow y = - {\log _a}\left( {1 - {a^{ - x}}} \right) \\
\]
Therefore,
\[
\Rightarrow 1 - {a^{ - x}} > 0 \\
\Rightarrow {a^{ - x}} < 1 \\
\Rightarrow {a^x} > 1 \\
\Rightarrow x > 0 \\
\]
Hence, the values can be anything greater than 0 to $\infty $.
Therefore, the domain of $y\left( x \right)$ is $\left( {0, + \infty } \right)$. So, our correct option is option (A).
Note:
Note that here we have taken \[1 - {a^{ - x}} > 0\] because, logarithm of a negative number is not possible and hence the value of \[1 - {a^{ - x}}\] must be greater than 0.
Other important point is that we have taken $x > 0$ for ${a^x} > 1$ as we know that ${a^x}$ will be equal to 1 only when $x = 0$, but here ${a^x} > 1$ and so the value of x cannot be 0 and hence, $x > 0$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

