
If \[y = {a^{{x^{{a^{x...\infty }}}}}}\] then show that $\dfrac{{dy}}{{dx}} = \dfrac{{{y^2}\log y}}{{x\left( {1 - y\log x\log y} \right)}}$
Answer
572.7k+ views
Hint: Simplify the given function by writing $y = {\left( {{a^x}} \right)^y}$ as it will not change the value of the function to make it easier to solve. Now take log on both sides two times and use the logarithm rules-$\log {m^n} = n\log m$ and $\log \left( {m \times n} \right) = \log m + \log n$.Then differentiate the obtained equation with respect to x. Use chain rule and product rule of differentiation to differentiate easily and then adjust the obtained result.
Complete step-by-step answer:
Given, \[y = {a^{{x^{{a^{x...\infty }}}}}}\]--- (i)
We have to prove that-$\dfrac{{dy}}{{dx}} = \dfrac{{{y^2}\log y}}{{x\left( {1 - y\log x\log y} \right)}}$
We can write it as $y = {\left( {{a^x}} \right)^y}$ {from eq. (i)}
On taking log both side, we get,
\[ \Rightarrow \log y = \log \left( {{{\left( {{a^x}} \right)}^y}} \right)\]
We know that $\log {m^n} = n\log m$ . On applying this in the above equation we get,
$ \Rightarrow \log y = {x^y}\log a$
Again, on taking log both sides we get,
$ \Rightarrow \log \left( {\log y} \right) = \log \left[ {{x^y} \times \log a} \right]$
We know the rule of logarithm that, $\log \left( {m \times n} \right) = \log m + \log n$
So on applying this formula to solve the above equation, we get-
$ \Rightarrow \log \left( {\log y} \right) = \log {x^y} + \log \left( {\log a} \right)$
Now using the rule$\log {m^n} = n\log m$, we get-
$ \Rightarrow \log \left( {\log y} \right) = y\log x + \log \left( {\log a} \right)$ -- (ii)
Now we have to find the derivative of first order so we will differentiate eq. (ii) w. r. t. x
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \left( {\log y} \right)} \right] = \dfrac{d}{{dx}}\left[ {y\log x + \log \left( {\log a} \right)} \right]$ -- (iii)
Now we can separately differentiate the functions given to make it easier to do calculation.
First we will solve the LHS,
We will follow chain rules to differentiate it w. r. t. x
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \left( {\log y} \right)} \right] = \dfrac{d}{{d\log y}}\left[ {\log \left( {\log y} \right)} \right]\dfrac{d}{{dy}}\left( {\log y} \right)\dfrac{{dy}}{{dx}}$
Now we will use formula$\dfrac{d}{{dx}}\left( {\log x} \right) = \left( {\dfrac{1}{x}} \right)$
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \left( {\log y} \right)} \right] = \dfrac{1}{{\log y}} \times \dfrac{1}{y} \times \dfrac{{dy}}{{dx}}$
On adjusting we can write,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \left( {\log y} \right)} \right] = \dfrac{1}{{y\log y}}\dfrac{{dy}}{{dx}}$ -- (iv)
Now we will solve RHS,
Here we will follow product rule to differentiate the given function,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {y\log x + \log \left( {\log a} \right)} \right] = \log x\dfrac{{dy}}{{dx}} + y\dfrac{d}{{dx}}\left( {\log x} \right) + \dfrac{d}{{dx}}\left[ {\log \left( {\log a} \right)} \right]$
Now we will use formula $\dfrac{d}{{dx}}\left( {\log x} \right) = \left( {\dfrac{1}{x}} \right)$ and $\dfrac{d}{{dx}}\left( {{\text{constant}}} \right) = 0$
$ \Rightarrow \dfrac{d}{{dx}}\left[ {y\log x + \log \left( {\log a} \right)} \right] = \log x\dfrac{{dy}}{{dx}} + y \times \dfrac{1}{x} + 0$
On simplifying we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {y\log x + \log \left( {\log a} \right)} \right] = \log x\dfrac{{dy}}{{dx}} + \dfrac{y}{x}$ --- (v)
Now substituting the values from eq. (iv) and eq. (v) in eq. (iii), we get,
$ \Rightarrow \dfrac{1}{{y\log y}}\dfrac{{dy}}{{dx}} = \log x\dfrac{{dy}}{{dx}} + \dfrac{y}{x}$
On adjusting we get,
$ \Rightarrow \dfrac{1}{{y\log y}}\dfrac{{dy}}{{dx}} - \log x\dfrac{{dy}}{{dx}} = \dfrac{y}{x}$
On taking $\dfrac{{dy}}{{dx}}$ common we get,
$ \Rightarrow \left( {\dfrac{1}{{y\log y}} - \log x} \right)\dfrac{{dy}}{{dx}} = \dfrac{y}{x}$
On taking LCM we get,
$ \Rightarrow \left( {\dfrac{{1 - y\log y\log x}}{{y\log y}}} \right)\dfrac{{dy}}{{dx}} = \dfrac{y}{x}$
On transferring the coefficient of $\dfrac{{dy}}{{dx}}$ from left to right side we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{x}\left( {\dfrac{{y\log y}}{{1 - \log y\log x}}} \right)$
On solving further we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{y^2}\log y}}{{x\left( {1 - \log x\log y} \right)}}$
Hence proved.
Note: Here the function $\log a$ is constant hence its differentiation is zero but $\log y$ is not a constant as y is the dependent variable. So when using product rule we also differentiate $\log y$.In this differentiation-
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \left( {\log y} \right)} \right] = \dfrac{d}{{d\log y}}\left[ {\log \left( {\log y} \right)} \right]\dfrac{d}{{dy}}\left( {\log y} \right)\dfrac{{dy}}{{dx}}$
We take $\log y$ as one variable to differentiate the logarithm function$\left[ {\log \left( {\log y} \right)} \right]$ .This makes it easier to differentiate the whole function and to solve it further.
Complete step-by-step answer:
Given, \[y = {a^{{x^{{a^{x...\infty }}}}}}\]--- (i)
We have to prove that-$\dfrac{{dy}}{{dx}} = \dfrac{{{y^2}\log y}}{{x\left( {1 - y\log x\log y} \right)}}$
We can write it as $y = {\left( {{a^x}} \right)^y}$ {from eq. (i)}
On taking log both side, we get,
\[ \Rightarrow \log y = \log \left( {{{\left( {{a^x}} \right)}^y}} \right)\]
We know that $\log {m^n} = n\log m$ . On applying this in the above equation we get,
$ \Rightarrow \log y = {x^y}\log a$
Again, on taking log both sides we get,
$ \Rightarrow \log \left( {\log y} \right) = \log \left[ {{x^y} \times \log a} \right]$
We know the rule of logarithm that, $\log \left( {m \times n} \right) = \log m + \log n$
So on applying this formula to solve the above equation, we get-
$ \Rightarrow \log \left( {\log y} \right) = \log {x^y} + \log \left( {\log a} \right)$
Now using the rule$\log {m^n} = n\log m$, we get-
$ \Rightarrow \log \left( {\log y} \right) = y\log x + \log \left( {\log a} \right)$ -- (ii)
Now we have to find the derivative of first order so we will differentiate eq. (ii) w. r. t. x
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \left( {\log y} \right)} \right] = \dfrac{d}{{dx}}\left[ {y\log x + \log \left( {\log a} \right)} \right]$ -- (iii)
Now we can separately differentiate the functions given to make it easier to do calculation.
First we will solve the LHS,
We will follow chain rules to differentiate it w. r. t. x
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \left( {\log y} \right)} \right] = \dfrac{d}{{d\log y}}\left[ {\log \left( {\log y} \right)} \right]\dfrac{d}{{dy}}\left( {\log y} \right)\dfrac{{dy}}{{dx}}$
Now we will use formula$\dfrac{d}{{dx}}\left( {\log x} \right) = \left( {\dfrac{1}{x}} \right)$
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \left( {\log y} \right)} \right] = \dfrac{1}{{\log y}} \times \dfrac{1}{y} \times \dfrac{{dy}}{{dx}}$
On adjusting we can write,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \left( {\log y} \right)} \right] = \dfrac{1}{{y\log y}}\dfrac{{dy}}{{dx}}$ -- (iv)
Now we will solve RHS,
Here we will follow product rule to differentiate the given function,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {y\log x + \log \left( {\log a} \right)} \right] = \log x\dfrac{{dy}}{{dx}} + y\dfrac{d}{{dx}}\left( {\log x} \right) + \dfrac{d}{{dx}}\left[ {\log \left( {\log a} \right)} \right]$
Now we will use formula $\dfrac{d}{{dx}}\left( {\log x} \right) = \left( {\dfrac{1}{x}} \right)$ and $\dfrac{d}{{dx}}\left( {{\text{constant}}} \right) = 0$
$ \Rightarrow \dfrac{d}{{dx}}\left[ {y\log x + \log \left( {\log a} \right)} \right] = \log x\dfrac{{dy}}{{dx}} + y \times \dfrac{1}{x} + 0$
On simplifying we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {y\log x + \log \left( {\log a} \right)} \right] = \log x\dfrac{{dy}}{{dx}} + \dfrac{y}{x}$ --- (v)
Now substituting the values from eq. (iv) and eq. (v) in eq. (iii), we get,
$ \Rightarrow \dfrac{1}{{y\log y}}\dfrac{{dy}}{{dx}} = \log x\dfrac{{dy}}{{dx}} + \dfrac{y}{x}$
On adjusting we get,
$ \Rightarrow \dfrac{1}{{y\log y}}\dfrac{{dy}}{{dx}} - \log x\dfrac{{dy}}{{dx}} = \dfrac{y}{x}$
On taking $\dfrac{{dy}}{{dx}}$ common we get,
$ \Rightarrow \left( {\dfrac{1}{{y\log y}} - \log x} \right)\dfrac{{dy}}{{dx}} = \dfrac{y}{x}$
On taking LCM we get,
$ \Rightarrow \left( {\dfrac{{1 - y\log y\log x}}{{y\log y}}} \right)\dfrac{{dy}}{{dx}} = \dfrac{y}{x}$
On transferring the coefficient of $\dfrac{{dy}}{{dx}}$ from left to right side we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{x}\left( {\dfrac{{y\log y}}{{1 - \log y\log x}}} \right)$
On solving further we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{y^2}\log y}}{{x\left( {1 - \log x\log y} \right)}}$
Hence proved.
Note: Here the function $\log a$ is constant hence its differentiation is zero but $\log y$ is not a constant as y is the dependent variable. So when using product rule we also differentiate $\log y$.In this differentiation-
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \left( {\log y} \right)} \right] = \dfrac{d}{{d\log y}}\left[ {\log \left( {\log y} \right)} \right]\dfrac{d}{{dy}}\left( {\log y} \right)\dfrac{{dy}}{{dx}}$
We take $\log y$ as one variable to differentiate the logarithm function$\left[ {\log \left( {\log y} \right)} \right]$ .This makes it easier to differentiate the whole function and to solve it further.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

