
If ${{\text{x}}^{\text{y}}}{\text{ = }}{{\text{y}}^{\text{x}}}$and x = 2y, then find the values of x and y (x,y >0)
A. x = 4, y = 2
B. x = 3, y = 2
C. x = 1, y = 1
D. none of these.
Answer
602.7k+ views
Hint – In order to solve this problem put the value of x in the given equation and solve to find the value of y. Then put the value of y in which x is present then solve for x. Doing this will make your problem solved.
Complete step-by-step answer:
The given equations are :
$ \to {{\text{x}}^{\text{y}}}{\text{ = }}{{\text{y}}^{\text{x}}}$ ……(1)
x = 2y ……(2)
Taking log both sides in equation (1) we get,
$ \to {\text{log}}{{\text{x}}^{\text{y}}}{\text{ = log}}{{\text{y}}^{\text{x}}}$
Solving it further we get,
$
\because \log {a^b} = a\log b \\
\to {\text{ylogx = xlogy}} \\
\to \dfrac{{{\text{logx}}}}{{\text{x}}}{\text{ = }}\dfrac{{{\text{logy}}}}{{\text{y}}} \\
$
On putting the value of x from (1) in the above equation we will get the new equation as
$ \to \dfrac{{{\text{log2y}}}}{{{\text{2y}}}}{\text{ = }}\dfrac{{{\text{logy}}}}{{\text{y}}}$
Simplifying the above equation we get,
$ \to {\text{log2y = 2logy}}$
$ \to {\text{log2y - 2logy = 0}}$
As we know ${\text{logab = loga}}\,{\text{ + logb}}$applying the same in above equation we get,
$
\to {\text{log2 + logy - 2logy = 0}} \\
\to {\text{log2 - logy = 0}} \\
\to {\text{logy = log2}} \\
\to {\text{y = 2}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\text{(}}\because {\text{loga = logb}} \to {\text{a = b}}) \\
$
On putting the value of y in equation (2) we will get the value of x as,
$ \to $x = 2(2)
$ \to $x = 4
Hence the value of y is 2 and that of x is 4.
So, the correct option is (A).
Note – Whenever you face this type of problem then try to use the concepts of logarithms it will make your problem a bit easier to solve. Here we have taken log and solved the equation using properties of log to reach the right answer.
Complete step-by-step answer:
The given equations are :
$ \to {{\text{x}}^{\text{y}}}{\text{ = }}{{\text{y}}^{\text{x}}}$ ……(1)
x = 2y ……(2)
Taking log both sides in equation (1) we get,
$ \to {\text{log}}{{\text{x}}^{\text{y}}}{\text{ = log}}{{\text{y}}^{\text{x}}}$
Solving it further we get,
$
\because \log {a^b} = a\log b \\
\to {\text{ylogx = xlogy}} \\
\to \dfrac{{{\text{logx}}}}{{\text{x}}}{\text{ = }}\dfrac{{{\text{logy}}}}{{\text{y}}} \\
$
On putting the value of x from (1) in the above equation we will get the new equation as
$ \to \dfrac{{{\text{log2y}}}}{{{\text{2y}}}}{\text{ = }}\dfrac{{{\text{logy}}}}{{\text{y}}}$
Simplifying the above equation we get,
$ \to {\text{log2y = 2logy}}$
$ \to {\text{log2y - 2logy = 0}}$
As we know ${\text{logab = loga}}\,{\text{ + logb}}$applying the same in above equation we get,
$
\to {\text{log2 + logy - 2logy = 0}} \\
\to {\text{log2 - logy = 0}} \\
\to {\text{logy = log2}} \\
\to {\text{y = 2}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\text{(}}\because {\text{loga = logb}} \to {\text{a = b}}) \\
$
On putting the value of y in equation (2) we will get the value of x as,
$ \to $x = 2(2)
$ \to $x = 4
Hence the value of y is 2 and that of x is 4.
So, the correct option is (A).
Note – Whenever you face this type of problem then try to use the concepts of logarithms it will make your problem a bit easier to solve. Here we have taken log and solved the equation using properties of log to reach the right answer.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

