
If x=$\tan {15^ \circ }$ ,y=${\text{cosec}}{75^ \circ }$ and z=$4\sin {18^ \circ }$ then,
A) $x < y < z$
B) $y < z < x$
C) $z < x < y$
D) $x < z < y$
Answer
592.5k+ views
Hint: Use the following trigonometric identities to get the values of x, y and z.
$\tan \left( {A + B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
$\sin \left( {A + B} \right) = \sin A\cos B + \operatorname{Cos} A\sin B$
And we know that $\sin {18^ \circ } = \dfrac{{\sqrt 5 - 1}}{4}$
Complete step-by-step answer:
We are given that x=$\tan {15^ \circ }$ -- (i)
y=${\text{cosec}}{75^ \circ }$ --- (ii)
and z=$4\sin {18^ \circ }$--- (iii)
We can write x=$\tan {15^ \circ }$$ = \tan \left( {45 - 30} \right)$
And we know that
$\tan \left( {A + B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
On substituting the given values we get,
$ \Rightarrow $ x=$\dfrac{{\tan {{45}^ \circ } - \tan {{30}^ \circ }}}{{1 + \tan {{45}^ \circ }\tan {{30}^ \circ }}}$
We know that $\tan {45^ \circ } = 1$ and $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$
On substituting these values in the equation we get,
$ \Rightarrow $ x=$\dfrac{{1 - \dfrac{1}{{\sqrt 3 }}}}{{1 + \dfrac{1}{{\sqrt 3 }}}}$
$ \Rightarrow $ x=$\dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}$
On rationalization we get,
$ \Rightarrow $ x= $\dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \times \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}}$
On solving the equation, we get-
$ \Rightarrow $ x=$\dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 - 1} \right)}}$
We know that $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ and${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$
On using the formulae we get
$ \Rightarrow $ x=$\dfrac{{{{\left( {\sqrt 3 } \right)}^2} + 1 - 2 \times \sqrt 3 }}{{{{\left( {\sqrt 3 } \right)}^2} - 1}}$
On solving we get-
$ \Rightarrow $ x= $\dfrac{{3 + 1 - 2\sqrt 3 }}{{3 - 1}}$
$ \Rightarrow $ x=$\dfrac{{4 - 2\sqrt 3 }}{2} = \dfrac{{2\left( {2 - \sqrt 3 } \right)}}{2}$
$ \Rightarrow $ x=$2 - \sqrt 3 $
We know the value of $\sqrt 3 = 1.732$ then,
$ \Rightarrow $ x=$2 - 1.732 = 0.268$ --- (iv)
Now we know that ${\text{cosec}}\theta {\text{ = }}\dfrac{1}{{\sin \theta }}$ and $\sin \left( {A + B} \right) = \sin A\cos B + \operatorname{Cos} A\sin B$,
So we can write eq. (ii) as
$ \Rightarrow $ y=\[{\text{cosec7}}{5^ \circ } = \dfrac{1}{{\sin {{75}^ \circ }}}\]
$ \Rightarrow $ y=$\dfrac{1}{{\sin \left( {40 + 30} \right)}}$
On using the formulae we get,
$ \Rightarrow $ y=$\dfrac{1}{{\sin 45\cos 30 + \cos 45\sin 30}}$
We know that $\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$ ,$\cos 30 = \dfrac{{\sqrt 3 }}{2}$ ,$\sin 30 = \dfrac{1}{2}$ and $\cos 45 = \dfrac{1}{{\sqrt 2 }}$
On substituting these values we get,
$ \Rightarrow $ y=$\dfrac{1}{{\dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2}}}$
On simplifying we get,
$ \Rightarrow $ y=$\dfrac{1}{{\dfrac{{\sqrt 3 }}{{2\sqrt 2 }} + \dfrac{1}{{2\sqrt 2 }}}}$
On taking LCM,
$ \Rightarrow $ y=$\dfrac{1}{{\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}}}$
$ \Rightarrow $ y=$\dfrac{{2\sqrt 2 }}{{\sqrt 3 + 1}}$
On rationalization, we get-
$ \Rightarrow $ y=$\dfrac{{2\sqrt 2 }}{{\sqrt 3 + 1}} \times \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}}$ $ = \dfrac{{2\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{{{{\left( {\sqrt 3 } \right)}^2} - 1}}$
$ \Rightarrow $ y=$\dfrac{{2\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{{3 - 1}}$
On further simplifying we get-
$ \Rightarrow $ y=$\dfrac{{2\sqrt 6 - 2}}{2} = \dfrac{{2\left( {\sqrt 6 - \sqrt 2 } \right)}}{2}$
$ \Rightarrow $ y=$\sqrt 6 - \sqrt 2 $
We know that $\sqrt 2 = 1.414$ and $\sqrt 6 = 2.449$. On substituting these values we get,
$ \Rightarrow $ y=$2.449 - 1.414 = 1.035$ --- (v)
Now, in eq. (ii) on putting the value $\sin {18^ \circ } = \dfrac{{\sqrt 5 - 1}}{4}$, we get
z=$4\sin {18^ \circ }$=$4 \times \dfrac{{\sqrt 5 - 1}}{4} = \sqrt 5 - 1$
we know that $\sqrt 5 = 2.23$
On putting this value we get,
z=$2.23 - 1 = 1.23$ -- (vi)
From eq. (iv), (v), (vi), it is clear that $x < y < z$
Hence, option A is correct.
Note: We write $\tan {15^ \circ }$$ = \tan \left( {45 - 30} \right)$ because we can easily calculate using the values of $\tan {45^ \circ }$ and $\tan {30^ \circ }$ . Similarly we can easily calculate the value of y using the values of $\sin {45^ \circ }$ and $\sin {30^ \circ }$ as we know the values of $\sin {45^ \circ }$ and $\sin {30^ \circ }$.
$\tan \left( {A + B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
$\sin \left( {A + B} \right) = \sin A\cos B + \operatorname{Cos} A\sin B$
And we know that $\sin {18^ \circ } = \dfrac{{\sqrt 5 - 1}}{4}$
Complete step-by-step answer:
We are given that x=$\tan {15^ \circ }$ -- (i)
y=${\text{cosec}}{75^ \circ }$ --- (ii)
and z=$4\sin {18^ \circ }$--- (iii)
We can write x=$\tan {15^ \circ }$$ = \tan \left( {45 - 30} \right)$
And we know that
$\tan \left( {A + B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
On substituting the given values we get,
$ \Rightarrow $ x=$\dfrac{{\tan {{45}^ \circ } - \tan {{30}^ \circ }}}{{1 + \tan {{45}^ \circ }\tan {{30}^ \circ }}}$
We know that $\tan {45^ \circ } = 1$ and $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$
On substituting these values in the equation we get,
$ \Rightarrow $ x=$\dfrac{{1 - \dfrac{1}{{\sqrt 3 }}}}{{1 + \dfrac{1}{{\sqrt 3 }}}}$
$ \Rightarrow $ x=$\dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}$
On rationalization we get,
$ \Rightarrow $ x= $\dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \times \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}}$
On solving the equation, we get-
$ \Rightarrow $ x=$\dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 - 1} \right)}}$
We know that $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ and${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$
On using the formulae we get
$ \Rightarrow $ x=$\dfrac{{{{\left( {\sqrt 3 } \right)}^2} + 1 - 2 \times \sqrt 3 }}{{{{\left( {\sqrt 3 } \right)}^2} - 1}}$
On solving we get-
$ \Rightarrow $ x= $\dfrac{{3 + 1 - 2\sqrt 3 }}{{3 - 1}}$
$ \Rightarrow $ x=$\dfrac{{4 - 2\sqrt 3 }}{2} = \dfrac{{2\left( {2 - \sqrt 3 } \right)}}{2}$
$ \Rightarrow $ x=$2 - \sqrt 3 $
We know the value of $\sqrt 3 = 1.732$ then,
$ \Rightarrow $ x=$2 - 1.732 = 0.268$ --- (iv)
Now we know that ${\text{cosec}}\theta {\text{ = }}\dfrac{1}{{\sin \theta }}$ and $\sin \left( {A + B} \right) = \sin A\cos B + \operatorname{Cos} A\sin B$,
So we can write eq. (ii) as
$ \Rightarrow $ y=\[{\text{cosec7}}{5^ \circ } = \dfrac{1}{{\sin {{75}^ \circ }}}\]
$ \Rightarrow $ y=$\dfrac{1}{{\sin \left( {40 + 30} \right)}}$
On using the formulae we get,
$ \Rightarrow $ y=$\dfrac{1}{{\sin 45\cos 30 + \cos 45\sin 30}}$
We know that $\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$ ,$\cos 30 = \dfrac{{\sqrt 3 }}{2}$ ,$\sin 30 = \dfrac{1}{2}$ and $\cos 45 = \dfrac{1}{{\sqrt 2 }}$
On substituting these values we get,
$ \Rightarrow $ y=$\dfrac{1}{{\dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2}}}$
On simplifying we get,
$ \Rightarrow $ y=$\dfrac{1}{{\dfrac{{\sqrt 3 }}{{2\sqrt 2 }} + \dfrac{1}{{2\sqrt 2 }}}}$
On taking LCM,
$ \Rightarrow $ y=$\dfrac{1}{{\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}}}$
$ \Rightarrow $ y=$\dfrac{{2\sqrt 2 }}{{\sqrt 3 + 1}}$
On rationalization, we get-
$ \Rightarrow $ y=$\dfrac{{2\sqrt 2 }}{{\sqrt 3 + 1}} \times \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}}$ $ = \dfrac{{2\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{{{{\left( {\sqrt 3 } \right)}^2} - 1}}$
$ \Rightarrow $ y=$\dfrac{{2\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{{3 - 1}}$
On further simplifying we get-
$ \Rightarrow $ y=$\dfrac{{2\sqrt 6 - 2}}{2} = \dfrac{{2\left( {\sqrt 6 - \sqrt 2 } \right)}}{2}$
$ \Rightarrow $ y=$\sqrt 6 - \sqrt 2 $
We know that $\sqrt 2 = 1.414$ and $\sqrt 6 = 2.449$. On substituting these values we get,
$ \Rightarrow $ y=$2.449 - 1.414 = 1.035$ --- (v)
Now, in eq. (ii) on putting the value $\sin {18^ \circ } = \dfrac{{\sqrt 5 - 1}}{4}$, we get
z=$4\sin {18^ \circ }$=$4 \times \dfrac{{\sqrt 5 - 1}}{4} = \sqrt 5 - 1$
we know that $\sqrt 5 = 2.23$
On putting this value we get,
z=$2.23 - 1 = 1.23$ -- (vi)
From eq. (iv), (v), (vi), it is clear that $x < y < z$
Hence, option A is correct.
Note: We write $\tan {15^ \circ }$$ = \tan \left( {45 - 30} \right)$ because we can easily calculate using the values of $\tan {45^ \circ }$ and $\tan {30^ \circ }$ . Similarly we can easily calculate the value of y using the values of $\sin {45^ \circ }$ and $\sin {30^ \circ }$ as we know the values of $\sin {45^ \circ }$ and $\sin {30^ \circ }$.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

