
If \[{x_n} > {x_{n - 1}} > ... > {x_2} > {x_1} > {1_1}\] then the value of \[n{\text{ }}log{\text{ }}m\]
A.\[0\]
B.\[1\]
C.\[2\]
Answer
494.4k+ views
Hint:In the given question, we are given that \[{x_n} > {x_{n - 1}}.... > {x_2} > {x_1} > 1\] where n is any constant and further we have to find out the value of these \[{x_n},{x_{n - 1}}\] with logarithm. Using logarithmic identities, We will find the value of these logarithm values asked in the question.
Complete step-by-step answer:
In the given question we have to find out the value of
\[{\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}....{\log _{{x_n}}}{x_n}^{\left( {{x_{n - 1}}} \right){{....}^{{x_1}}}}\]
Where the values of \[{x_n},{x_{n - 1}},.....,{x_2},{x_1},1\]
Are given in an order which is\[{x_{n,}} > {x_{n - 1}} > ..... > {x_2} > {x_1} > 1\]
Since we have to find the value in log.
Therefore, using logarithmic identities, we will find the value of asked question. We are to find the value of
\[{\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}....{\log _{{x_n}}}{x_n}^{\left( {{x_{n - 1}}} \right){{....}^{{x_1}}}}\]
Now using the identity \[\log {m^n} = n\log m\]
We get \[{\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}....{\log _{{x_n}}}{x_n}^{\left( {{x_{n - 1}}} \right){{....}^{{x_1}}}}\] \[{x_{{1_{{{\log }_{^{^{{x_n}^{{x_n}}}}}}}}}}\]
Also \[{\log _m}m = 1\] therefore \[{\log _{{x_n}}}{x_n} = 1\]
We get \[{\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}....{\log _{{x_n}}}{x_n}^{\left( {{x_{n - 1}}} \right){{....}^{{x_1}}}}\]
Therefore, we get \[{\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}{x_3}^{{x_2}^{{x_1}}}...............(1)\]
Again, in the third term \[{\log _{{x_3}}}{x_3}^{\left( {{x_2}^{{x_1}}} \right)}\]
We get \[{x_2}^{{x_1}}{\log _{{x_3}}}{x_3}\]
Since \[{\log _m}m = 1\]therefore \[{\log _{{x_3}}}{x_3} = 1\]
Therefore equation \[1\] becomes \[{\log _{{x_1}}}{\log _{{x_2}}}{x_2}^{{x_1}}\]
Again using the same logarithmic identities, we get
\[{\log _{{x_1}}},{x_1}{\log _{{x_2}^{{x_2}}}}\]
Again \[{\log _{{x^2}}}{x_2} = 1\], we get \[{\log _{{x_1}}}{x_1}\]
Which is \[{\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}....{\log _{{x_n}}}{x_n}^{\left( {{x_{n - 1}}} \right){{....}^{{x_1}}}} = 1\]
So option (B) is correct.
In this question, We had used two identities, that for two constants or variables m and n \[{\log _{{m^n}}} = 1\] which means if both in the base and in the value if there is same constant or variable then the value of \[{\log _{{m^m}}} = 1\]. Also, second identity is \[\log {m^n}\], which means log of m to the power n, then the value of \[\log {m^n}\] becomes \[n{\text{ }}logm\] that means power comes in front of the log and the value of m is there.
Note: Logarithmic is the mathematical expression or formula that is used to find out the values of various variables and constants. Some basic identities of logarithm for two variables m and n are \[\log mn = \log m + \log n,\log \dfrac{m}{n} = \log m - \log n\]
\[\log {m^n} = n\log m\] and \[{\log _{{m^m}}} = 1\]
Using these logarithmic identities, we can find out the values of variables or constants as well as the relationship between them.
Complete step-by-step answer:
In the given question we have to find out the value of
\[{\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}....{\log _{{x_n}}}{x_n}^{\left( {{x_{n - 1}}} \right){{....}^{{x_1}}}}\]
Where the values of \[{x_n},{x_{n - 1}},.....,{x_2},{x_1},1\]
Are given in an order which is\[{x_{n,}} > {x_{n - 1}} > ..... > {x_2} > {x_1} > 1\]
Since we have to find the value in log.
Therefore, using logarithmic identities, we will find the value of asked question. We are to find the value of
\[{\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}....{\log _{{x_n}}}{x_n}^{\left( {{x_{n - 1}}} \right){{....}^{{x_1}}}}\]
Now using the identity \[\log {m^n} = n\log m\]
We get \[{\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}....{\log _{{x_n}}}{x_n}^{\left( {{x_{n - 1}}} \right){{....}^{{x_1}}}}\] \[{x_{{1_{{{\log }_{^{^{{x_n}^{{x_n}}}}}}}}}}\]
Also \[{\log _m}m = 1\] therefore \[{\log _{{x_n}}}{x_n} = 1\]
We get \[{\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}....{\log _{{x_n}}}{x_n}^{\left( {{x_{n - 1}}} \right){{....}^{{x_1}}}}\]
Therefore, we get \[{\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}{x_3}^{{x_2}^{{x_1}}}...............(1)\]
Again, in the third term \[{\log _{{x_3}}}{x_3}^{\left( {{x_2}^{{x_1}}} \right)}\]
We get \[{x_2}^{{x_1}}{\log _{{x_3}}}{x_3}\]
Since \[{\log _m}m = 1\]therefore \[{\log _{{x_3}}}{x_3} = 1\]
Therefore equation \[1\] becomes \[{\log _{{x_1}}}{\log _{{x_2}}}{x_2}^{{x_1}}\]
Again using the same logarithmic identities, we get
\[{\log _{{x_1}}},{x_1}{\log _{{x_2}^{{x_2}}}}\]
Again \[{\log _{{x^2}}}{x_2} = 1\], we get \[{\log _{{x_1}}}{x_1}\]
Which is \[{\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}....{\log _{{x_n}}}{x_n}^{\left( {{x_{n - 1}}} \right){{....}^{{x_1}}}} = 1\]
So option (B) is correct.
In this question, We had used two identities, that for two constants or variables m and n \[{\log _{{m^n}}} = 1\] which means if both in the base and in the value if there is same constant or variable then the value of \[{\log _{{m^m}}} = 1\]. Also, second identity is \[\log {m^n}\], which means log of m to the power n, then the value of \[\log {m^n}\] becomes \[n{\text{ }}logm\] that means power comes in front of the log and the value of m is there.
Note: Logarithmic is the mathematical expression or formula that is used to find out the values of various variables and constants. Some basic identities of logarithm for two variables m and n are \[\log mn = \log m + \log n,\log \dfrac{m}{n} = \log m - \log n\]
\[\log {m^n} = n\log m\] and \[{\log _{{m^m}}} = 1\]
Using these logarithmic identities, we can find out the values of variables or constants as well as the relationship between them.
Recently Updated Pages
Power set of empty set has exactly subset class 11 maths CBSE

While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Sanjeevani booti brought about by Lord Hanuman to cure class 11 biology CBSE

A police jeep on patrol duty on a national highway class 11 physics CBSE

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Whales are warmblooded animals which live in cold seas class 11 biology CBSE

What is Environment class 11 chemistry CBSE
