Answer

Verified

445.5k+ views

**Hint:**In this problem, first we will rewrite the given equation. Then, we will use differentials to approximate the required value of $x$. We know that the increment in variable $y$ corresponding to the increment in variable $x$ is given by $\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right)$. Also we know that the differential of $x$ is defined as $dx = \Delta x$ and the differential of $y$ is defined as $dy = f'\left( x \right)dx$ or $dy = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x$. We will use this information to approximate the value of $x$.

**Complete step-by-step answer:**

In this problem, the given equation is ${x^5} - 8 = 159$. Let us rewrite this equation. Therefore, we get $

{x^5} = 159 + 8 \\

\Rightarrow {x^5} = 167 \\

\Rightarrow x = {\left( {167} \right)^{\dfrac{1}{5}}}\; \cdots \cdots \left( 1 \right) \\

$

Now we need to find the fifth root of the number $167$. First we will think about the number whose fifth root is a positive integer. We know that ${\left( {243} \right)^{\dfrac{1}{5}}} = 3$. Therefore, we will rewrite the equation $\left( 1 \right)$ as ${\left( {167} \right)^{\dfrac{1}{5}}} = {\left( {243 - 76} \right)^{\dfrac{1}{5}}}$.

To approximate this value, let us consider $y = f\left( x \right) = {x^{\dfrac{1}{5}}}$ with $x = 243$ and $\Delta x = - 76$.

We know that the increment in variable $y$ corresponding to the increment in variable $x$ is given by $\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right)$. Therefore, we can write

$

\Delta y = {\left( {x + \Delta x} \right)^{\dfrac{1}{5}}} - {x^{\dfrac{1}{5}}}\quad \left[ {\because f\left( x \right) = {x^{\dfrac{1}{5}}}} \right] \\

\Rightarrow \Delta y = {\left( {243 - 76} \right)^{\dfrac{1}{5}}} - {\left( {243} \right)^{\dfrac{1}{5}}}\quad \left[ {\because x = 243,\;\Delta x = - 76} \right] \\

\Rightarrow \Delta y = {\left( {167} \right)^{\dfrac{1}{5}}} - 3 \\

\Rightarrow {\left( {167} \right)^{\dfrac{1}{5}}} = 3 + \Delta y \cdots \cdots \left( 2 \right) \\

$

Also we know that the differential of $x$ is defined as $dx = \Delta x$ and the differential of $y$ is defined as $dy = f'\left( x \right)dx$ or $dy = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x$. Therefore, we can write

$dy = \left( {\dfrac{1}{5}{x^{\dfrac{1}{5} - 1}}} \right)\left( { - 76} \right) \cdots \cdots \left( 3 \right)\quad \left[ {\because y = {x^{\dfrac{1}{5}}},\;\Delta x = - 76} \right]$

Note the here we find $\dfrac{{dy}}{{dx}}$ using the formula $\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$. Let us simplify the equation $\left( 3 \right)$. Therefore, we get $dy = - \dfrac{{76{x^{\left( { - \dfrac{4}{5}} \right)}}}}{5}$

$

\Rightarrow dy = - \dfrac{{76{{\left( {243} \right)}^{ - \dfrac{4}{5}}}}}{5}\quad \left[ {\because x = 243} \right] \\

\Rightarrow dy = - \dfrac{{76{{\left( {{3^5}} \right)}^{ - \dfrac{4}{5}}}}}{5} \\

\Rightarrow dy = - \dfrac{{76{{\left( 3 \right)}^{ - 5 \times \dfrac{4}{5}}}}}{5}\quad \left[ {\because {{\left( {{a^m}} \right)}^n} = {a^{m\; \times \;n}}} \right] \\

\Rightarrow dy = - \dfrac{{76{{\left( 3 \right)}^{ - 4}}}}{5} \\

\Rightarrow dy = - \dfrac{{76}}{{5{{\left( 3 \right)}^4}}} \\

\Rightarrow dy = - \dfrac{{76}}{{5\left( {81} \right)}} \\

\Rightarrow dy = - 0.1877 \\

$

Note that here $dy$ is approximately equal to $\Delta y$. Therefore, $\Delta y = - 0.1877$.

Now we will put the value of $\Delta y$ in equation $\left( 2 \right)$, we get ${\left( {167} \right)^{\dfrac{1}{5}}} = 3 + \left( { - 0.1877} \right)$

$ \Rightarrow {\left( {167} \right)^{\dfrac{1}{5}}} = 2.8123$. Therefore, if ${x^5} - 8 = 159$ then the approximate value of $x$ is $2.81$.

Therefore, option D is correct.

**Note:**In this type of problem if $dx = \Delta x$ is relatively small (when compared with $x$) then $dy$ will be a good approximation of $\Delta y$ and it is denoted by $dy \approx \Delta y$. Also note that the differential of the dependent variable (usually $y$) is not equal to the increment of the variable but the differential of the independent variable (usually $x$) is equal to the increment of variable. In this problem, $y$ is dependent variable and $x$ is independent variable.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write a letter to the principal requesting him to grant class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE