Answer

Verified

413.1k+ views

**Hint:**In this problem, first we will rewrite the given equation. Then, we will use differentials to approximate the required value of $x$. We know that the increment in variable $y$ corresponding to the increment in variable $x$ is given by $\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right)$. Also we know that the differential of $x$ is defined as $dx = \Delta x$ and the differential of $y$ is defined as $dy = f'\left( x \right)dx$ or $dy = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x$. We will use this information to approximate the value of $x$.

**Complete step-by-step answer:**

In this problem, the given equation is ${x^5} - 8 = 159$. Let us rewrite this equation. Therefore, we get $

{x^5} = 159 + 8 \\

\Rightarrow {x^5} = 167 \\

\Rightarrow x = {\left( {167} \right)^{\dfrac{1}{5}}}\; \cdots \cdots \left( 1 \right) \\

$

Now we need to find the fifth root of the number $167$. First we will think about the number whose fifth root is a positive integer. We know that ${\left( {243} \right)^{\dfrac{1}{5}}} = 3$. Therefore, we will rewrite the equation $\left( 1 \right)$ as ${\left( {167} \right)^{\dfrac{1}{5}}} = {\left( {243 - 76} \right)^{\dfrac{1}{5}}}$.

To approximate this value, let us consider $y = f\left( x \right) = {x^{\dfrac{1}{5}}}$ with $x = 243$ and $\Delta x = - 76$.

We know that the increment in variable $y$ corresponding to the increment in variable $x$ is given by $\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right)$. Therefore, we can write

$

\Delta y = {\left( {x + \Delta x} \right)^{\dfrac{1}{5}}} - {x^{\dfrac{1}{5}}}\quad \left[ {\because f\left( x \right) = {x^{\dfrac{1}{5}}}} \right] \\

\Rightarrow \Delta y = {\left( {243 - 76} \right)^{\dfrac{1}{5}}} - {\left( {243} \right)^{\dfrac{1}{5}}}\quad \left[ {\because x = 243,\;\Delta x = - 76} \right] \\

\Rightarrow \Delta y = {\left( {167} \right)^{\dfrac{1}{5}}} - 3 \\

\Rightarrow {\left( {167} \right)^{\dfrac{1}{5}}} = 3 + \Delta y \cdots \cdots \left( 2 \right) \\

$

Also we know that the differential of $x$ is defined as $dx = \Delta x$ and the differential of $y$ is defined as $dy = f'\left( x \right)dx$ or $dy = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x$. Therefore, we can write

$dy = \left( {\dfrac{1}{5}{x^{\dfrac{1}{5} - 1}}} \right)\left( { - 76} \right) \cdots \cdots \left( 3 \right)\quad \left[ {\because y = {x^{\dfrac{1}{5}}},\;\Delta x = - 76} \right]$

Note the here we find $\dfrac{{dy}}{{dx}}$ using the formula $\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$. Let us simplify the equation $\left( 3 \right)$. Therefore, we get $dy = - \dfrac{{76{x^{\left( { - \dfrac{4}{5}} \right)}}}}{5}$

$

\Rightarrow dy = - \dfrac{{76{{\left( {243} \right)}^{ - \dfrac{4}{5}}}}}{5}\quad \left[ {\because x = 243} \right] \\

\Rightarrow dy = - \dfrac{{76{{\left( {{3^5}} \right)}^{ - \dfrac{4}{5}}}}}{5} \\

\Rightarrow dy = - \dfrac{{76{{\left( 3 \right)}^{ - 5 \times \dfrac{4}{5}}}}}{5}\quad \left[ {\because {{\left( {{a^m}} \right)}^n} = {a^{m\; \times \;n}}} \right] \\

\Rightarrow dy = - \dfrac{{76{{\left( 3 \right)}^{ - 4}}}}{5} \\

\Rightarrow dy = - \dfrac{{76}}{{5{{\left( 3 \right)}^4}}} \\

\Rightarrow dy = - \dfrac{{76}}{{5\left( {81} \right)}} \\

\Rightarrow dy = - 0.1877 \\

$

Note that here $dy$ is approximately equal to $\Delta y$. Therefore, $\Delta y = - 0.1877$.

Now we will put the value of $\Delta y$ in equation $\left( 2 \right)$, we get ${\left( {167} \right)^{\dfrac{1}{5}}} = 3 + \left( { - 0.1877} \right)$

$ \Rightarrow {\left( {167} \right)^{\dfrac{1}{5}}} = 2.8123$. Therefore, if ${x^5} - 8 = 159$ then the approximate value of $x$ is $2.81$.

Therefore, option D is correct.

**Note:**In this type of problem if $dx = \Delta x$ is relatively small (when compared with $x$) then $dy$ will be a good approximation of $\Delta y$ and it is denoted by $dy \approx \Delta y$. Also note that the differential of the dependent variable (usually $y$) is not equal to the increment of the variable but the differential of the independent variable (usually $x$) is equal to the increment of variable. In this problem, $y$ is dependent variable and $x$ is independent variable.

Recently Updated Pages

Select the smallest atom A F B Cl C Br D I class 11 chemistry CBSE

Cryolite and fluorspar are mixed with Al2O3 during class 11 chemistry CBSE

The best reagent to convert pent 3 en 2 ol and pent class 11 chemistry CBSE

Reverse process of sublimation is aFusion bCondensation class 11 chemistry CBSE

The best and latest technique for isolation purification class 11 chemistry CBSE

Hydrochloric acid is a Strong acid b Weak acid c Strong class 11 chemistry CBSE

Trending doubts

The provincial president of the constituent assembly class 11 social science CBSE

Gersoppa waterfall is located in AGuyana BUganda C class 9 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

The hundru falls is in A Chota Nagpur Plateau B Calcutta class 8 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE