If ${x^5} - 8 = 159$, what is the approximate value of $x$?
A. $2.67$
B. $2.71$
C. $2.78$
D. $2.81$
E. $2.84$
Answer
Verified
477k+ views
Hint: In this problem, first we will rewrite the given equation. Then, we will use differentials to approximate the required value of $x$. We know that the increment in variable $y$ corresponding to the increment in variable $x$ is given by $\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right)$. Also we know that the differential of $x$ is defined as $dx = \Delta x$ and the differential of $y$ is defined as $dy = f'\left( x \right)dx$ or $dy = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x$. We will use this information to approximate the value of $x$.
Complete step-by-step answer:
In this problem, the given equation is ${x^5} - 8 = 159$. Let us rewrite this equation. Therefore, we get $
{x^5} = 159 + 8 \\
\Rightarrow {x^5} = 167 \\
\Rightarrow x = {\left( {167} \right)^{\dfrac{1}{5}}}\; \cdots \cdots \left( 1 \right) \\
$
Now we need to find the fifth root of the number $167$. First we will think about the number whose fifth root is a positive integer. We know that ${\left( {243} \right)^{\dfrac{1}{5}}} = 3$. Therefore, we will rewrite the equation $\left( 1 \right)$ as ${\left( {167} \right)^{\dfrac{1}{5}}} = {\left( {243 - 76} \right)^{\dfrac{1}{5}}}$.
To approximate this value, let us consider $y = f\left( x \right) = {x^{\dfrac{1}{5}}}$ with $x = 243$ and $\Delta x = - 76$.
We know that the increment in variable $y$ corresponding to the increment in variable $x$ is given by $\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right)$. Therefore, we can write
$
\Delta y = {\left( {x + \Delta x} \right)^{\dfrac{1}{5}}} - {x^{\dfrac{1}{5}}}\quad \left[ {\because f\left( x \right) = {x^{\dfrac{1}{5}}}} \right] \\
\Rightarrow \Delta y = {\left( {243 - 76} \right)^{\dfrac{1}{5}}} - {\left( {243} \right)^{\dfrac{1}{5}}}\quad \left[ {\because x = 243,\;\Delta x = - 76} \right] \\
\Rightarrow \Delta y = {\left( {167} \right)^{\dfrac{1}{5}}} - 3 \\
\Rightarrow {\left( {167} \right)^{\dfrac{1}{5}}} = 3 + \Delta y \cdots \cdots \left( 2 \right) \\
$
Also we know that the differential of $x$ is defined as $dx = \Delta x$ and the differential of $y$ is defined as $dy = f'\left( x \right)dx$ or $dy = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x$. Therefore, we can write
$dy = \left( {\dfrac{1}{5}{x^{\dfrac{1}{5} - 1}}} \right)\left( { - 76} \right) \cdots \cdots \left( 3 \right)\quad \left[ {\because y = {x^{\dfrac{1}{5}}},\;\Delta x = - 76} \right]$
Note the here we find $\dfrac{{dy}}{{dx}}$ using the formula $\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$. Let us simplify the equation $\left( 3 \right)$. Therefore, we get $dy = - \dfrac{{76{x^{\left( { - \dfrac{4}{5}} \right)}}}}{5}$
$
\Rightarrow dy = - \dfrac{{76{{\left( {243} \right)}^{ - \dfrac{4}{5}}}}}{5}\quad \left[ {\because x = 243} \right] \\
\Rightarrow dy = - \dfrac{{76{{\left( {{3^5}} \right)}^{ - \dfrac{4}{5}}}}}{5} \\
\Rightarrow dy = - \dfrac{{76{{\left( 3 \right)}^{ - 5 \times \dfrac{4}{5}}}}}{5}\quad \left[ {\because {{\left( {{a^m}} \right)}^n} = {a^{m\; \times \;n}}} \right] \\
\Rightarrow dy = - \dfrac{{76{{\left( 3 \right)}^{ - 4}}}}{5} \\
\Rightarrow dy = - \dfrac{{76}}{{5{{\left( 3 \right)}^4}}} \\
\Rightarrow dy = - \dfrac{{76}}{{5\left( {81} \right)}} \\
\Rightarrow dy = - 0.1877 \\
$
Note that here $dy$ is approximately equal to $\Delta y$. Therefore, $\Delta y = - 0.1877$.
Now we will put the value of $\Delta y$ in equation $\left( 2 \right)$, we get ${\left( {167} \right)^{\dfrac{1}{5}}} = 3 + \left( { - 0.1877} \right)$
$ \Rightarrow {\left( {167} \right)^{\dfrac{1}{5}}} = 2.8123$. Therefore, if ${x^5} - 8 = 159$ then the approximate value of $x$ is $2.81$.
Therefore, option D is correct.
Note: In this type of problem if $dx = \Delta x$ is relatively small (when compared with $x$) then $dy$ will be a good approximation of $\Delta y$ and it is denoted by $dy \approx \Delta y$. Also note that the differential of the dependent variable (usually $y$) is not equal to the increment of the variable but the differential of the independent variable (usually $x$) is equal to the increment of variable. In this problem, $y$ is dependent variable and $x$ is independent variable.
Complete step-by-step answer:
In this problem, the given equation is ${x^5} - 8 = 159$. Let us rewrite this equation. Therefore, we get $
{x^5} = 159 + 8 \\
\Rightarrow {x^5} = 167 \\
\Rightarrow x = {\left( {167} \right)^{\dfrac{1}{5}}}\; \cdots \cdots \left( 1 \right) \\
$
Now we need to find the fifth root of the number $167$. First we will think about the number whose fifth root is a positive integer. We know that ${\left( {243} \right)^{\dfrac{1}{5}}} = 3$. Therefore, we will rewrite the equation $\left( 1 \right)$ as ${\left( {167} \right)^{\dfrac{1}{5}}} = {\left( {243 - 76} \right)^{\dfrac{1}{5}}}$.
To approximate this value, let us consider $y = f\left( x \right) = {x^{\dfrac{1}{5}}}$ with $x = 243$ and $\Delta x = - 76$.
We know that the increment in variable $y$ corresponding to the increment in variable $x$ is given by $\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right)$. Therefore, we can write
$
\Delta y = {\left( {x + \Delta x} \right)^{\dfrac{1}{5}}} - {x^{\dfrac{1}{5}}}\quad \left[ {\because f\left( x \right) = {x^{\dfrac{1}{5}}}} \right] \\
\Rightarrow \Delta y = {\left( {243 - 76} \right)^{\dfrac{1}{5}}} - {\left( {243} \right)^{\dfrac{1}{5}}}\quad \left[ {\because x = 243,\;\Delta x = - 76} \right] \\
\Rightarrow \Delta y = {\left( {167} \right)^{\dfrac{1}{5}}} - 3 \\
\Rightarrow {\left( {167} \right)^{\dfrac{1}{5}}} = 3 + \Delta y \cdots \cdots \left( 2 \right) \\
$
Also we know that the differential of $x$ is defined as $dx = \Delta x$ and the differential of $y$ is defined as $dy = f'\left( x \right)dx$ or $dy = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x$. Therefore, we can write
$dy = \left( {\dfrac{1}{5}{x^{\dfrac{1}{5} - 1}}} \right)\left( { - 76} \right) \cdots \cdots \left( 3 \right)\quad \left[ {\because y = {x^{\dfrac{1}{5}}},\;\Delta x = - 76} \right]$
Note the here we find $\dfrac{{dy}}{{dx}}$ using the formula $\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$. Let us simplify the equation $\left( 3 \right)$. Therefore, we get $dy = - \dfrac{{76{x^{\left( { - \dfrac{4}{5}} \right)}}}}{5}$
$
\Rightarrow dy = - \dfrac{{76{{\left( {243} \right)}^{ - \dfrac{4}{5}}}}}{5}\quad \left[ {\because x = 243} \right] \\
\Rightarrow dy = - \dfrac{{76{{\left( {{3^5}} \right)}^{ - \dfrac{4}{5}}}}}{5} \\
\Rightarrow dy = - \dfrac{{76{{\left( 3 \right)}^{ - 5 \times \dfrac{4}{5}}}}}{5}\quad \left[ {\because {{\left( {{a^m}} \right)}^n} = {a^{m\; \times \;n}}} \right] \\
\Rightarrow dy = - \dfrac{{76{{\left( 3 \right)}^{ - 4}}}}{5} \\
\Rightarrow dy = - \dfrac{{76}}{{5{{\left( 3 \right)}^4}}} \\
\Rightarrow dy = - \dfrac{{76}}{{5\left( {81} \right)}} \\
\Rightarrow dy = - 0.1877 \\
$
Note that here $dy$ is approximately equal to $\Delta y$. Therefore, $\Delta y = - 0.1877$.
Now we will put the value of $\Delta y$ in equation $\left( 2 \right)$, we get ${\left( {167} \right)^{\dfrac{1}{5}}} = 3 + \left( { - 0.1877} \right)$
$ \Rightarrow {\left( {167} \right)^{\dfrac{1}{5}}} = 2.8123$. Therefore, if ${x^5} - 8 = 159$ then the approximate value of $x$ is $2.81$.
Therefore, option D is correct.
Note: In this type of problem if $dx = \Delta x$ is relatively small (when compared with $x$) then $dy$ will be a good approximation of $\Delta y$ and it is denoted by $dy \approx \Delta y$. Also note that the differential of the dependent variable (usually $y$) is not equal to the increment of the variable but the differential of the independent variable (usually $x$) is equal to the increment of variable. In this problem, $y$ is dependent variable and $x$ is independent variable.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE