Answer
Verified
466.5k+ views
Hint: Firstly, try to find the conic represented by the given function by simplifying the equations using mathematical identities and get an equation in terms of x and y.
Then convert the equations into a standard form of any conic section (i.e. ellipse, parabola, or hyperbola).
Circle: $ {{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{r}^{2}} $
Parabola: \[\left\{ \begin{align}
& y=\dfrac{{{\left( x-h \right)}^{2}}}{4a}+k \\
& x=\dfrac{{{\left( y-k \right)}^{2}}}{4a}+h \\
\end{align} \right\}\]
Ellipse: \[\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}+\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1\]
Hyperbola: \[\left\{ \begin{align}
& \text{for a b : }\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1 \\
& \text{for a b : }\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}-\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}=1 \\
\end{align} \right\}\]\[\left\{ \begin{align}
& \text{for a b : }\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1 \\
& \text{for a b : }\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}-\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}=1 \\
\end{align} \right\}\]
After getting the equation of the conic section, find the foci for the required conic section.
Complete step-by-step answer:
Consider the given functions:
\[\begin{align}
& x=2\left( \cos \text{t}-\sin \text{t} \right)......(1) \\
& y=3\left( \cos \text{t}+\sin \text{t} \right)......(2) \\
\end{align}\]
Squaring the both sides of equation (1) & (2),
By applying the identities:\[\left[ \begin{align}
& \because {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& \because {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
\end{align} \right]\]\[\left[ \begin{align}
& \because {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& \because {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
\end{align} \right]\]
we get:
\[\begin{align}
& {{x}^{2}}=4\left( {{\cos }^{2}}\text{t +}{{\sin }^{2}}\text{t}-2\sin \text{t}\text{.}\cos \text{t} \right)......(3) \\
& {{y}^{2}}=9\left( {{\cos }^{2}}\text{t}+{{\sin }^{2}}\text{t }+\text{ }2\sin \text{t}\text{.}\cos \text{t} \right)......(4) \\
\end{align}\]
We can also write above equations as:
\[\begin{align}
& \dfrac{{{x}^{2}}}{4}=\left( {{\cos }^{2}}\text{t +}{{\sin }^{2}}\text{t}-2\sin \text{t}\text{.}\cos \text{t} \right)......(5) \\
& \dfrac{{{y}^{2}}}{9}=\left( {{\cos }^{2}}\text{t}+{{\sin }^{2}}\text{t }+\text{ }2\sin \text{t}\text{.}\cos \text{t} \right)......(4) \\
\end{align}\]
Add both the equations (5) & (6), we get:
\[\begin{align}
& \dfrac{{{x}^{2}}}{4}+\dfrac{{{y}^{2}}}{9}=\left( {{\cos }^{2}}\text{t +}{{\sin }^{2}}\text{t}-2\sin \text{t}\text{.}\cos \text{t} \right) \\
& +\left( {{\cos }^{2}}\text{t}+{{\sin }^{2}}\text{t }+\text{ }2\sin \text{t}\text{.}\cos \text{t} \right) \\
& ={{\left( {{\cos }^{2}}\text{t +}{{\sin }^{2}}\text{t} \right)}^{2}}.......(7)
\end{align}\]
Since \[\left( {{\cos }^{2}}\text{t +}{{\sin }^{2}}\text{t} \right)=1\], equation (7) becomes:
\[\dfrac{{{x}^{2}}}{4}+\dfrac{{{y}^{2}}}{9}=2......(8)\]
Equation (8) can also be written as: \[\dfrac{{{x}^{2}}}{8}+\dfrac{{{y}^{2}}}{18}=1......(9)\]
Compare equation (8) with the standard form of various conic sections.
We get to know that equation (8) represents ellipse whose standard form of equation is \[\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}+\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1\]
Hence, \[\dfrac{{{x}^{2}}}{8}+\dfrac{{{y}^{2}}}{18}=1\] is an ellipse, where h=k=0; a= $ \sqrt{8} $ and b= $ \sqrt{18} $ .
Since a < b, the major axis of ellipse is parallel to the y-axis.
The ellipse represented by equation (8) is shown with the help of a diagram below. Here BD is the major axis and AC is the minor axis.
The foci of the ellipse lies on the major axis which is the y-axis itself. Those are represented by E $ \left( 0,be \right) $ and F $ \left( 0,-be \right) $ where ‘e’ is the eccentricity of the ellipse.
Now to find the foci of the ellipse, we need to calculate the eccentricity (e) of the ellipse.
i.e. for ellipse \[\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}+\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1\];
If a < b, then $ e=\sqrt{1-\dfrac{{{b}^{2}}}{{{a}^{2}}}} $ $ e=\sqrt{1-\dfrac{{{a}^{2}}}{{{b}^{2}}}} $
If a > b, then $ e=\sqrt{1-\dfrac{{{b}^{2}}}{{{a}^{2}}}} $
Therefore, eccentricity of the given ellipse \[\dfrac{{{x}^{2}}}{8}+\dfrac{{{y}^{2}}}{18}=1\] is \[e=\sqrt{1-\dfrac{8}{18}}\]
\[e=\sqrt{\dfrac{10}{18}}\]
\[e=\sqrt{\dfrac{2\times 5}{2\times 9}}\]
\[e=\dfrac{\sqrt{5}}{3}\]
So focii of given ellipse are \[\left( 0,\sqrt{18}\times \dfrac{\sqrt{5}}{3} \right)\] and \[\left( 0,-\sqrt{18}\times \dfrac{\sqrt{5}}{3} \right)\]
i.e. \[(0,+\sqrt{10})\]and \[(0,-\sqrt{10})\]
So, the correct answer is “Option D”.
Note: Be careful while identifying the major axis of ellipse while considering the values of a and b because it might change the value of eccentricity and therefore foci would lie parallel to the x-axis in another case (i.e. a > b).
Suppose we subtract the square of both the equations instead of adding them to simplify and get an equation in terms of x and y.
Then convert the equations into a standard form of any conic section (i.e. ellipse, parabola, or hyperbola).
Circle: $ {{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{r}^{2}} $
Parabola: \[\left\{ \begin{align}
& y=\dfrac{{{\left( x-h \right)}^{2}}}{4a}+k \\
& x=\dfrac{{{\left( y-k \right)}^{2}}}{4a}+h \\
\end{align} \right\}\]
Ellipse: \[\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}+\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1\]
Hyperbola: \[\left\{ \begin{align}
& \text{for a b : }\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1 \\
& \text{for a b : }\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}-\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}=1 \\
\end{align} \right\}\]\[\left\{ \begin{align}
& \text{for a b : }\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1 \\
& \text{for a b : }\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}-\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}=1 \\
\end{align} \right\}\]
After getting the equation of the conic section, find the foci for the required conic section.
Complete step-by-step answer:
Consider the given functions:
\[\begin{align}
& x=2\left( \cos \text{t}-\sin \text{t} \right)......(1) \\
& y=3\left( \cos \text{t}+\sin \text{t} \right)......(2) \\
\end{align}\]
Squaring the both sides of equation (1) & (2),
By applying the identities:\[\left[ \begin{align}
& \because {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& \because {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
\end{align} \right]\]\[\left[ \begin{align}
& \because {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& \because {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
\end{align} \right]\]
we get:
\[\begin{align}
& {{x}^{2}}=4\left( {{\cos }^{2}}\text{t +}{{\sin }^{2}}\text{t}-2\sin \text{t}\text{.}\cos \text{t} \right)......(3) \\
& {{y}^{2}}=9\left( {{\cos }^{2}}\text{t}+{{\sin }^{2}}\text{t }+\text{ }2\sin \text{t}\text{.}\cos \text{t} \right)......(4) \\
\end{align}\]
We can also write above equations as:
\[\begin{align}
& \dfrac{{{x}^{2}}}{4}=\left( {{\cos }^{2}}\text{t +}{{\sin }^{2}}\text{t}-2\sin \text{t}\text{.}\cos \text{t} \right)......(5) \\
& \dfrac{{{y}^{2}}}{9}=\left( {{\cos }^{2}}\text{t}+{{\sin }^{2}}\text{t }+\text{ }2\sin \text{t}\text{.}\cos \text{t} \right)......(4) \\
\end{align}\]
Add both the equations (5) & (6), we get:
\[\begin{align}
& \dfrac{{{x}^{2}}}{4}+\dfrac{{{y}^{2}}}{9}=\left( {{\cos }^{2}}\text{t +}{{\sin }^{2}}\text{t}-2\sin \text{t}\text{.}\cos \text{t} \right) \\
& +\left( {{\cos }^{2}}\text{t}+{{\sin }^{2}}\text{t }+\text{ }2\sin \text{t}\text{.}\cos \text{t} \right) \\
& ={{\left( {{\cos }^{2}}\text{t +}{{\sin }^{2}}\text{t} \right)}^{2}}.......(7)
\end{align}\]
Since \[\left( {{\cos }^{2}}\text{t +}{{\sin }^{2}}\text{t} \right)=1\], equation (7) becomes:
\[\dfrac{{{x}^{2}}}{4}+\dfrac{{{y}^{2}}}{9}=2......(8)\]
Equation (8) can also be written as: \[\dfrac{{{x}^{2}}}{8}+\dfrac{{{y}^{2}}}{18}=1......(9)\]
Compare equation (8) with the standard form of various conic sections.
We get to know that equation (8) represents ellipse whose standard form of equation is \[\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}+\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1\]
Hence, \[\dfrac{{{x}^{2}}}{8}+\dfrac{{{y}^{2}}}{18}=1\] is an ellipse, where h=k=0; a= $ \sqrt{8} $ and b= $ \sqrt{18} $ .
Since a < b, the major axis of ellipse is parallel to the y-axis.
The ellipse represented by equation (8) is shown with the help of a diagram below. Here BD is the major axis and AC is the minor axis.
The foci of the ellipse lies on the major axis which is the y-axis itself. Those are represented by E $ \left( 0,be \right) $ and F $ \left( 0,-be \right) $ where ‘e’ is the eccentricity of the ellipse.
Now to find the foci of the ellipse, we need to calculate the eccentricity (e) of the ellipse.
i.e. for ellipse \[\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}+\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1\];
If a < b, then $ e=\sqrt{1-\dfrac{{{b}^{2}}}{{{a}^{2}}}} $ $ e=\sqrt{1-\dfrac{{{a}^{2}}}{{{b}^{2}}}} $
If a > b, then $ e=\sqrt{1-\dfrac{{{b}^{2}}}{{{a}^{2}}}} $
Therefore, eccentricity of the given ellipse \[\dfrac{{{x}^{2}}}{8}+\dfrac{{{y}^{2}}}{18}=1\] is \[e=\sqrt{1-\dfrac{8}{18}}\]
\[e=\sqrt{\dfrac{10}{18}}\]
\[e=\sqrt{\dfrac{2\times 5}{2\times 9}}\]
\[e=\dfrac{\sqrt{5}}{3}\]
So focii of given ellipse are \[\left( 0,\sqrt{18}\times \dfrac{\sqrt{5}}{3} \right)\] and \[\left( 0,-\sqrt{18}\times \dfrac{\sqrt{5}}{3} \right)\]
i.e. \[(0,+\sqrt{10})\]and \[(0,-\sqrt{10})\]
So, the correct answer is “Option D”.
Note: Be careful while identifying the major axis of ellipse while considering the values of a and b because it might change the value of eccentricity and therefore foci would lie parallel to the x-axis in another case (i.e. a > b).
Suppose we subtract the square of both the equations instead of adding them to simplify and get an equation in terms of x and y.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE