
If \[x\] varies as the \[{m^{th}}\] power of \[y\], \[y\] varies as the \[{n^{th}}\] power of \[z\] and \[x\] varies as the \[{p^{th}}\] power of \[z\], then which one of the following is correct?
A. \[p = m + n\]
B. \[p = m - n\]
C. \[p = mn\]
D. None of the above
Answer
485.1k+ views
Hint: In this question, we will proceed by writing the given data and converting them to the desired way. Then substitute the terms in each other to form a relation between \[p,m,n\] to get the required answer. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Given that \[x\] varies as the \[{m^{th}}\] power of \[y\] i.e., \[y = {x^{\dfrac{1}{m}}} \Rightarrow x = {y^m}\]
And \[y\] varies as the \[{n^{th}}\] power of \[z\] i.e., \[z = {y^{\dfrac{1}{n}}} \Rightarrow y = {z^n}\]
\[
\Rightarrow y = {z^n} \\
\Rightarrow x = {\left( {{y^m}} \right)^n}{\text{ }}\left[ {\because x = {y^m}} \right] \\
\Rightarrow x = {z^{mn}}.................................\left( 1 \right) \\
\]
Also given that and \[x\] varies as the \[{p^{th}}\] power of \[z\]i.e., \[z = {x^{\dfrac{1}{p}}} \Rightarrow x = {z^p}.........................\left( 2 \right)\]
From equation (1) and (2), we have
\[ \Rightarrow {x^{mn}} = {x^p}\]
Since, the bases are equal we can equate the powers on both sides
\[
\Rightarrow mn = p \\
\therefore p = mn \\
\]
Thus, the correct option is C. \[p = mn\]
Note: Here, if \[a\] varies as the \[{b^{th}}\] power of \[c\], then it can be written as \[a = {c^{\dfrac{1}{b}}} \Rightarrow c = {a^b}\]. Whenever we have equal bases on both sides, we can equate the powers of the terms on both sides i.e., if \[{x^m} = {x^n}\] then \[m = n\].
Complete step-by-step answer:
Given that \[x\] varies as the \[{m^{th}}\] power of \[y\] i.e., \[y = {x^{\dfrac{1}{m}}} \Rightarrow x = {y^m}\]
And \[y\] varies as the \[{n^{th}}\] power of \[z\] i.e., \[z = {y^{\dfrac{1}{n}}} \Rightarrow y = {z^n}\]
\[
\Rightarrow y = {z^n} \\
\Rightarrow x = {\left( {{y^m}} \right)^n}{\text{ }}\left[ {\because x = {y^m}} \right] \\
\Rightarrow x = {z^{mn}}.................................\left( 1 \right) \\
\]
Also given that and \[x\] varies as the \[{p^{th}}\] power of \[z\]i.e., \[z = {x^{\dfrac{1}{p}}} \Rightarrow x = {z^p}.........................\left( 2 \right)\]
From equation (1) and (2), we have
\[ \Rightarrow {x^{mn}} = {x^p}\]
Since, the bases are equal we can equate the powers on both sides
\[
\Rightarrow mn = p \\
\therefore p = mn \\
\]
Thus, the correct option is C. \[p = mn\]
Note: Here, if \[a\] varies as the \[{b^{th}}\] power of \[c\], then it can be written as \[a = {c^{\dfrac{1}{b}}} \Rightarrow c = {a^b}\]. Whenever we have equal bases on both sides, we can equate the powers of the terms on both sides i.e., if \[{x^m} = {x^n}\] then \[m = n\].
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
