Answer
Verified
496.8k+ views
Hint:- Use expansions of \[{\left( {1 + x} \right)^{ - n}}\] and \[{{\text{e}}^x}\].
As we know the expansion of \[{{\text{e}}^x}\] is,
\[ \Rightarrow {e^x} = 1 + x + \dfrac{{{x^2}}}{{2!}} + ........ + \dfrac{{{x^n}}}{{n!}}\] (1)
From equation 1. We can say that,
\[ \Rightarrow {{\text{e}}^x} > 1 + x\]
Now, taking log both sides of the above equation. It becomes,
\[ \Rightarrow \log {e^x} > \log (1 + x)\] (2)
Solving above equation. It becomes,
\[ \Rightarrow 1 + x = {\left( {1 - \dfrac{x}{{1 + x}}} \right)^{ - 1}}\] (3)
As we know the expansion of \[{(1 + y)^{ - 1}}\].
\[ \Rightarrow {(1 + y)^{ - 1}} = 1 - y + {y^2} - {y^3} + .......{\text{ }}\] (4)
Now, putting the value of \[{\text{y = }}\left( { - \dfrac{x}{{1 + x}}} \right)\] in equation 4. We get,
\[ \Rightarrow {\left( {1 - \dfrac{x}{{1 + x}}} \right)^{ - 1}} = 1 + \dfrac{x}{{1 + x}} + {\left( {\dfrac{x}{{1 + x}}} \right)^2} + .....\] (5)
And now putting the value of \[x = \dfrac{x}{{1 + x}}\] in equation 1. We get,
\[ \Rightarrow {e^{\dfrac{x}{{1 + x}}}} = 1 + \dfrac{x}{{1 + x}} + \dfrac{{{{\left( {\dfrac{x}{{1 + x}}} \right)}^2}}}{{2!}} + ........ + \dfrac{{{{\left( {\dfrac{x}{{1 + x}}} \right)}^n}}}{{n!}}\] (6)
From equation 3, 5 and 6. We can say that,
\[ \Rightarrow 1 + x > {e^{\dfrac{x}{{1 + x}}}}\]
Taking log both sides of the above equation. We get,
\[ \Rightarrow \log (1 + x) > \log {e^{\dfrac{x}{{1 + x}}}}\]
As we know that, \[\log (e) = 1\].
So, we can write above equation as,
\[ \Rightarrow \log (1 + x) > \dfrac{x}{{1 + x}}\] (7)
Therefore, from equation 2 and 7. We can say that,
\[ \Rightarrow x > \log (1 + x) > \dfrac{x}{{1 + x}}\]
Hence Proved.
Note:- Whenever we came up with this type of problem where log is
Involved, then we should use the expansion of \[{{\text{e}}^x}\], \[{\left( {1 + x} \right)^n},{\left( {1 + x} \right)^{ - n}}\] and
\[\log (1 + x)\] and then try to manipulate their expansions to get the required
result. As this will be the easiest and efficient way to prove the result.
As we know the expansion of \[{{\text{e}}^x}\] is,
\[ \Rightarrow {e^x} = 1 + x + \dfrac{{{x^2}}}{{2!}} + ........ + \dfrac{{{x^n}}}{{n!}}\] (1)
From equation 1. We can say that,
\[ \Rightarrow {{\text{e}}^x} > 1 + x\]
Now, taking log both sides of the above equation. It becomes,
\[ \Rightarrow \log {e^x} > \log (1 + x)\] (2)
Solving above equation. It becomes,
\[ \Rightarrow 1 + x = {\left( {1 - \dfrac{x}{{1 + x}}} \right)^{ - 1}}\] (3)
As we know the expansion of \[{(1 + y)^{ - 1}}\].
\[ \Rightarrow {(1 + y)^{ - 1}} = 1 - y + {y^2} - {y^3} + .......{\text{ }}\] (4)
Now, putting the value of \[{\text{y = }}\left( { - \dfrac{x}{{1 + x}}} \right)\] in equation 4. We get,
\[ \Rightarrow {\left( {1 - \dfrac{x}{{1 + x}}} \right)^{ - 1}} = 1 + \dfrac{x}{{1 + x}} + {\left( {\dfrac{x}{{1 + x}}} \right)^2} + .....\] (5)
And now putting the value of \[x = \dfrac{x}{{1 + x}}\] in equation 1. We get,
\[ \Rightarrow {e^{\dfrac{x}{{1 + x}}}} = 1 + \dfrac{x}{{1 + x}} + \dfrac{{{{\left( {\dfrac{x}{{1 + x}}} \right)}^2}}}{{2!}} + ........ + \dfrac{{{{\left( {\dfrac{x}{{1 + x}}} \right)}^n}}}{{n!}}\] (6)
From equation 3, 5 and 6. We can say that,
\[ \Rightarrow 1 + x > {e^{\dfrac{x}{{1 + x}}}}\]
Taking log both sides of the above equation. We get,
\[ \Rightarrow \log (1 + x) > \log {e^{\dfrac{x}{{1 + x}}}}\]
As we know that, \[\log (e) = 1\].
So, we can write above equation as,
\[ \Rightarrow \log (1 + x) > \dfrac{x}{{1 + x}}\] (7)
Therefore, from equation 2 and 7. We can say that,
\[ \Rightarrow x > \log (1 + x) > \dfrac{x}{{1 + x}}\]
Hence Proved.
Note:- Whenever we came up with this type of problem where log is
Involved, then we should use the expansion of \[{{\text{e}}^x}\], \[{\left( {1 + x} \right)^n},{\left( {1 + x} \right)^{ - n}}\] and
\[\log (1 + x)\] and then try to manipulate their expansions to get the required
result. As this will be the easiest and efficient way to prove the result.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it