
If x is positive, show that \[\log (1 + x) < x\] and \[ > \dfrac{x}{{1 + x}}\].
Answer
623.4k+ views
Hint:- Use expansions of \[{\left( {1 + x} \right)^{ - n}}\] and \[{{\text{e}}^x}\].
As we know the expansion of \[{{\text{e}}^x}\] is,
\[ \Rightarrow {e^x} = 1 + x + \dfrac{{{x^2}}}{{2!}} + ........ + \dfrac{{{x^n}}}{{n!}}\] (1)
From equation 1. We can say that,
\[ \Rightarrow {{\text{e}}^x} > 1 + x\]
Now, taking log both sides of the above equation. It becomes,
\[ \Rightarrow \log {e^x} > \log (1 + x)\] (2)
Solving above equation. It becomes,
\[ \Rightarrow 1 + x = {\left( {1 - \dfrac{x}{{1 + x}}} \right)^{ - 1}}\] (3)
As we know the expansion of \[{(1 + y)^{ - 1}}\].
\[ \Rightarrow {(1 + y)^{ - 1}} = 1 - y + {y^2} - {y^3} + .......{\text{ }}\] (4)
Now, putting the value of \[{\text{y = }}\left( { - \dfrac{x}{{1 + x}}} \right)\] in equation 4. We get,
\[ \Rightarrow {\left( {1 - \dfrac{x}{{1 + x}}} \right)^{ - 1}} = 1 + \dfrac{x}{{1 + x}} + {\left( {\dfrac{x}{{1 + x}}} \right)^2} + .....\] (5)
And now putting the value of \[x = \dfrac{x}{{1 + x}}\] in equation 1. We get,
\[ \Rightarrow {e^{\dfrac{x}{{1 + x}}}} = 1 + \dfrac{x}{{1 + x}} + \dfrac{{{{\left( {\dfrac{x}{{1 + x}}} \right)}^2}}}{{2!}} + ........ + \dfrac{{{{\left( {\dfrac{x}{{1 + x}}} \right)}^n}}}{{n!}}\] (6)
From equation 3, 5 and 6. We can say that,
\[ \Rightarrow 1 + x > {e^{\dfrac{x}{{1 + x}}}}\]
Taking log both sides of the above equation. We get,
\[ \Rightarrow \log (1 + x) > \log {e^{\dfrac{x}{{1 + x}}}}\]
As we know that, \[\log (e) = 1\].
So, we can write above equation as,
\[ \Rightarrow \log (1 + x) > \dfrac{x}{{1 + x}}\] (7)
Therefore, from equation 2 and 7. We can say that,
\[ \Rightarrow x > \log (1 + x) > \dfrac{x}{{1 + x}}\]
Hence Proved.
Note:- Whenever we came up with this type of problem where log is
Involved, then we should use the expansion of \[{{\text{e}}^x}\], \[{\left( {1 + x} \right)^n},{\left( {1 + x} \right)^{ - n}}\] and
\[\log (1 + x)\] and then try to manipulate their expansions to get the required
result. As this will be the easiest and efficient way to prove the result.
As we know the expansion of \[{{\text{e}}^x}\] is,
\[ \Rightarrow {e^x} = 1 + x + \dfrac{{{x^2}}}{{2!}} + ........ + \dfrac{{{x^n}}}{{n!}}\] (1)
From equation 1. We can say that,
\[ \Rightarrow {{\text{e}}^x} > 1 + x\]
Now, taking log both sides of the above equation. It becomes,
\[ \Rightarrow \log {e^x} > \log (1 + x)\] (2)
Solving above equation. It becomes,
\[ \Rightarrow 1 + x = {\left( {1 - \dfrac{x}{{1 + x}}} \right)^{ - 1}}\] (3)
As we know the expansion of \[{(1 + y)^{ - 1}}\].
\[ \Rightarrow {(1 + y)^{ - 1}} = 1 - y + {y^2} - {y^3} + .......{\text{ }}\] (4)
Now, putting the value of \[{\text{y = }}\left( { - \dfrac{x}{{1 + x}}} \right)\] in equation 4. We get,
\[ \Rightarrow {\left( {1 - \dfrac{x}{{1 + x}}} \right)^{ - 1}} = 1 + \dfrac{x}{{1 + x}} + {\left( {\dfrac{x}{{1 + x}}} \right)^2} + .....\] (5)
And now putting the value of \[x = \dfrac{x}{{1 + x}}\] in equation 1. We get,
\[ \Rightarrow {e^{\dfrac{x}{{1 + x}}}} = 1 + \dfrac{x}{{1 + x}} + \dfrac{{{{\left( {\dfrac{x}{{1 + x}}} \right)}^2}}}{{2!}} + ........ + \dfrac{{{{\left( {\dfrac{x}{{1 + x}}} \right)}^n}}}{{n!}}\] (6)
From equation 3, 5 and 6. We can say that,
\[ \Rightarrow 1 + x > {e^{\dfrac{x}{{1 + x}}}}\]
Taking log both sides of the above equation. We get,
\[ \Rightarrow \log (1 + x) > \log {e^{\dfrac{x}{{1 + x}}}}\]
As we know that, \[\log (e) = 1\].
So, we can write above equation as,
\[ \Rightarrow \log (1 + x) > \dfrac{x}{{1 + x}}\] (7)
Therefore, from equation 2 and 7. We can say that,
\[ \Rightarrow x > \log (1 + x) > \dfrac{x}{{1 + x}}\]
Hence Proved.
Note:- Whenever we came up with this type of problem where log is
Involved, then we should use the expansion of \[{{\text{e}}^x}\], \[{\left( {1 + x} \right)^n},{\left( {1 + x} \right)^{ - n}}\] and
\[\log (1 + x)\] and then try to manipulate their expansions to get the required
result. As this will be the easiest and efficient way to prove the result.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

