
If x is positive, show that \[\log (1 + x) < x\] and \[ > \dfrac{x}{{1 + x}}\].
Answer
604.5k+ views
Hint:- Use expansions of \[{\left( {1 + x} \right)^{ - n}}\] and \[{{\text{e}}^x}\].
As we know the expansion of \[{{\text{e}}^x}\] is,
\[ \Rightarrow {e^x} = 1 + x + \dfrac{{{x^2}}}{{2!}} + ........ + \dfrac{{{x^n}}}{{n!}}\] (1)
From equation 1. We can say that,
\[ \Rightarrow {{\text{e}}^x} > 1 + x\]
Now, taking log both sides of the above equation. It becomes,
\[ \Rightarrow \log {e^x} > \log (1 + x)\] (2)
Solving above equation. It becomes,
\[ \Rightarrow 1 + x = {\left( {1 - \dfrac{x}{{1 + x}}} \right)^{ - 1}}\] (3)
As we know the expansion of \[{(1 + y)^{ - 1}}\].
\[ \Rightarrow {(1 + y)^{ - 1}} = 1 - y + {y^2} - {y^3} + .......{\text{ }}\] (4)
Now, putting the value of \[{\text{y = }}\left( { - \dfrac{x}{{1 + x}}} \right)\] in equation 4. We get,
\[ \Rightarrow {\left( {1 - \dfrac{x}{{1 + x}}} \right)^{ - 1}} = 1 + \dfrac{x}{{1 + x}} + {\left( {\dfrac{x}{{1 + x}}} \right)^2} + .....\] (5)
And now putting the value of \[x = \dfrac{x}{{1 + x}}\] in equation 1. We get,
\[ \Rightarrow {e^{\dfrac{x}{{1 + x}}}} = 1 + \dfrac{x}{{1 + x}} + \dfrac{{{{\left( {\dfrac{x}{{1 + x}}} \right)}^2}}}{{2!}} + ........ + \dfrac{{{{\left( {\dfrac{x}{{1 + x}}} \right)}^n}}}{{n!}}\] (6)
From equation 3, 5 and 6. We can say that,
\[ \Rightarrow 1 + x > {e^{\dfrac{x}{{1 + x}}}}\]
Taking log both sides of the above equation. We get,
\[ \Rightarrow \log (1 + x) > \log {e^{\dfrac{x}{{1 + x}}}}\]
As we know that, \[\log (e) = 1\].
So, we can write above equation as,
\[ \Rightarrow \log (1 + x) > \dfrac{x}{{1 + x}}\] (7)
Therefore, from equation 2 and 7. We can say that,
\[ \Rightarrow x > \log (1 + x) > \dfrac{x}{{1 + x}}\]
Hence Proved.
Note:- Whenever we came up with this type of problem where log is
Involved, then we should use the expansion of \[{{\text{e}}^x}\], \[{\left( {1 + x} \right)^n},{\left( {1 + x} \right)^{ - n}}\] and
\[\log (1 + x)\] and then try to manipulate their expansions to get the required
result. As this will be the easiest and efficient way to prove the result.
As we know the expansion of \[{{\text{e}}^x}\] is,
\[ \Rightarrow {e^x} = 1 + x + \dfrac{{{x^2}}}{{2!}} + ........ + \dfrac{{{x^n}}}{{n!}}\] (1)
From equation 1. We can say that,
\[ \Rightarrow {{\text{e}}^x} > 1 + x\]
Now, taking log both sides of the above equation. It becomes,
\[ \Rightarrow \log {e^x} > \log (1 + x)\] (2)
Solving above equation. It becomes,
\[ \Rightarrow 1 + x = {\left( {1 - \dfrac{x}{{1 + x}}} \right)^{ - 1}}\] (3)
As we know the expansion of \[{(1 + y)^{ - 1}}\].
\[ \Rightarrow {(1 + y)^{ - 1}} = 1 - y + {y^2} - {y^3} + .......{\text{ }}\] (4)
Now, putting the value of \[{\text{y = }}\left( { - \dfrac{x}{{1 + x}}} \right)\] in equation 4. We get,
\[ \Rightarrow {\left( {1 - \dfrac{x}{{1 + x}}} \right)^{ - 1}} = 1 + \dfrac{x}{{1 + x}} + {\left( {\dfrac{x}{{1 + x}}} \right)^2} + .....\] (5)
And now putting the value of \[x = \dfrac{x}{{1 + x}}\] in equation 1. We get,
\[ \Rightarrow {e^{\dfrac{x}{{1 + x}}}} = 1 + \dfrac{x}{{1 + x}} + \dfrac{{{{\left( {\dfrac{x}{{1 + x}}} \right)}^2}}}{{2!}} + ........ + \dfrac{{{{\left( {\dfrac{x}{{1 + x}}} \right)}^n}}}{{n!}}\] (6)
From equation 3, 5 and 6. We can say that,
\[ \Rightarrow 1 + x > {e^{\dfrac{x}{{1 + x}}}}\]
Taking log both sides of the above equation. We get,
\[ \Rightarrow \log (1 + x) > \log {e^{\dfrac{x}{{1 + x}}}}\]
As we know that, \[\log (e) = 1\].
So, we can write above equation as,
\[ \Rightarrow \log (1 + x) > \dfrac{x}{{1 + x}}\] (7)
Therefore, from equation 2 and 7. We can say that,
\[ \Rightarrow x > \log (1 + x) > \dfrac{x}{{1 + x}}\]
Hence Proved.
Note:- Whenever we came up with this type of problem where log is
Involved, then we should use the expansion of \[{{\text{e}}^x}\], \[{\left( {1 + x} \right)^n},{\left( {1 + x} \right)^{ - n}}\] and
\[\log (1 + x)\] and then try to manipulate their expansions to get the required
result. As this will be the easiest and efficient way to prove the result.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

