
If \[x = a\left\{ {\cos \theta + \log \tan \left( {\dfrac{\theta }{2}} \right)} \right\}\] and \[y = a\sin \theta \], then \[\dfrac{{dy}}{{dx}}\] is equal to
A. \[\cot \theta \]
B. \[\tan \theta \]
C. \[\sin \theta \]
D. \[\cos \theta \]
Answer
577.2k+ views
Hint: First, we have to find the differentiation of both parameters \[x\] and \[y\] with respect to \[\theta \]. Then we will substitute the value of \[\dfrac{{dy}}{{d\theta }}\] and \[\dfrac{{dx}}{{d\theta }}\]. Then we will divide both the equation to find the derivative \[\dfrac{{dy}}{{dx}}\].
Complete step by step answer:
We are given that \[x = a\left\{ {\cos \theta + \log \tan \left( {\dfrac{\theta }{2}} \right)} \right\}\] and \[y = a\sin \theta \].
First, we have to differentiate both parameters \[x\] and \[y\] with respect to \[\theta \] to find the derivative \[\dfrac{{dy}}{{dx}}\].
Now diving both the above differentiation, we get
\[
\Rightarrow \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}} \\
\Rightarrow \dfrac{{dy}}{{d\theta }} \times \dfrac{{d\theta }}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} \\
\]
Differentiating the parameter \[x\] with respect to \[\theta \], we get
\[
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( { - \sin \theta + \dfrac{{{{\sec }^2}\theta }}{{\tan \dfrac{\theta }{2}}} \times \dfrac{1}{2}} \right) \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( { - \sin \theta + \dfrac{{\cos \dfrac{\theta }{2}}}{{{{\cos }^2}\dfrac{\theta }{2}\sin \dfrac{\theta }{2}}} \times \dfrac{1}{2}} \right) \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( { - \sin \theta + \dfrac{1}{{2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}}} \right) \\
\]
Using the property,\[\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}\] in the above equation, we get
\[
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( { - \sin \theta + \dfrac{1}{{\sin \theta }}} \right) \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( {\dfrac{{ - {{\sin }^2}\theta + 1}}{{\sin \theta }}} \right) \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( {\dfrac{{1 - {{\sin }^2}\theta }}{{\sin \theta }}} \right) \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( {\dfrac{{{{\cos }^2}\theta }}{{\sin \theta }}} \right){\text{ ......eq.(1)}} \\
\]
Differentiating the parameter \[y\] with respect to \[\theta \], we get
\[ \Rightarrow \dfrac{{dy}}{{d\theta }} = a\cos \theta {\text{ ......eq.(2)}}\]
Dividing equation (2) by equation (1) to find \[\dfrac{{dy}}{{dx}}\], we get
\[
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{a\cos \theta \sin \theta }}{{a{{\cos }^2}\theta }} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\sin \theta }}{{\cos \theta }} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \tan \theta \\
\]
Hence, option B is correct.
Note: In this question, we have used basic trigonometric identities here to remember such identities, which will enable us to solve questions easily. Students should not substitute the value of \[\dfrac{{dy}}{{d\theta }}\]and \[\dfrac{{dx}}{{d\theta }}\] directly to find the expression asked. Calculate \[\dfrac{{dx}}{{d\theta }}\] and \[\dfrac{{dy}}{{d\theta }}\] separately or else will get the wrong result. One should know the differentiation properties to solve this question.
Complete step by step answer:
We are given that \[x = a\left\{ {\cos \theta + \log \tan \left( {\dfrac{\theta }{2}} \right)} \right\}\] and \[y = a\sin \theta \].
First, we have to differentiate both parameters \[x\] and \[y\] with respect to \[\theta \] to find the derivative \[\dfrac{{dy}}{{dx}}\].
Now diving both the above differentiation, we get
\[
\Rightarrow \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}} \\
\Rightarrow \dfrac{{dy}}{{d\theta }} \times \dfrac{{d\theta }}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} \\
\]
Differentiating the parameter \[x\] with respect to \[\theta \], we get
\[
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( { - \sin \theta + \dfrac{{{{\sec }^2}\theta }}{{\tan \dfrac{\theta }{2}}} \times \dfrac{1}{2}} \right) \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( { - \sin \theta + \dfrac{{\cos \dfrac{\theta }{2}}}{{{{\cos }^2}\dfrac{\theta }{2}\sin \dfrac{\theta }{2}}} \times \dfrac{1}{2}} \right) \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( { - \sin \theta + \dfrac{1}{{2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}}} \right) \\
\]
Using the property,\[\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}\] in the above equation, we get
\[
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( { - \sin \theta + \dfrac{1}{{\sin \theta }}} \right) \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( {\dfrac{{ - {{\sin }^2}\theta + 1}}{{\sin \theta }}} \right) \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( {\dfrac{{1 - {{\sin }^2}\theta }}{{\sin \theta }}} \right) \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( {\dfrac{{{{\cos }^2}\theta }}{{\sin \theta }}} \right){\text{ ......eq.(1)}} \\
\]
Differentiating the parameter \[y\] with respect to \[\theta \], we get
\[ \Rightarrow \dfrac{{dy}}{{d\theta }} = a\cos \theta {\text{ ......eq.(2)}}\]
Dividing equation (2) by equation (1) to find \[\dfrac{{dy}}{{dx}}\], we get
\[
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{a\cos \theta \sin \theta }}{{a{{\cos }^2}\theta }} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\sin \theta }}{{\cos \theta }} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \tan \theta \\
\]
Hence, option B is correct.
Note: In this question, we have used basic trigonometric identities here to remember such identities, which will enable us to solve questions easily. Students should not substitute the value of \[\dfrac{{dy}}{{d\theta }}\]and \[\dfrac{{dx}}{{d\theta }}\] directly to find the expression asked. Calculate \[\dfrac{{dx}}{{d\theta }}\] and \[\dfrac{{dy}}{{d\theta }}\] separately or else will get the wrong result. One should know the differentiation properties to solve this question.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

