
If \[x = a\left\{ {\cos \theta + \log \tan \left( {\dfrac{\theta }{2}} \right)} \right\}\] and \[y = a\sin \theta \], then \[\dfrac{{dy}}{{dx}}\] is equal to
A. \[\cot \theta \]
B. \[\tan \theta \]
C. \[\sin \theta \]
D. \[\cos \theta \]
Answer
591.6k+ views
Hint: First, we have to find the differentiation of both parameters \[x\] and \[y\] with respect to \[\theta \]. Then we will substitute the value of \[\dfrac{{dy}}{{d\theta }}\] and \[\dfrac{{dx}}{{d\theta }}\]. Then we will divide both the equation to find the derivative \[\dfrac{{dy}}{{dx}}\].
Complete step by step answer:
We are given that \[x = a\left\{ {\cos \theta + \log \tan \left( {\dfrac{\theta }{2}} \right)} \right\}\] and \[y = a\sin \theta \].
First, we have to differentiate both parameters \[x\] and \[y\] with respect to \[\theta \] to find the derivative \[\dfrac{{dy}}{{dx}}\].
Now diving both the above differentiation, we get
\[
\Rightarrow \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}} \\
\Rightarrow \dfrac{{dy}}{{d\theta }} \times \dfrac{{d\theta }}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} \\
\]
Differentiating the parameter \[x\] with respect to \[\theta \], we get
\[
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( { - \sin \theta + \dfrac{{{{\sec }^2}\theta }}{{\tan \dfrac{\theta }{2}}} \times \dfrac{1}{2}} \right) \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( { - \sin \theta + \dfrac{{\cos \dfrac{\theta }{2}}}{{{{\cos }^2}\dfrac{\theta }{2}\sin \dfrac{\theta }{2}}} \times \dfrac{1}{2}} \right) \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( { - \sin \theta + \dfrac{1}{{2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}}} \right) \\
\]
Using the property,\[\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}\] in the above equation, we get
\[
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( { - \sin \theta + \dfrac{1}{{\sin \theta }}} \right) \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( {\dfrac{{ - {{\sin }^2}\theta + 1}}{{\sin \theta }}} \right) \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( {\dfrac{{1 - {{\sin }^2}\theta }}{{\sin \theta }}} \right) \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( {\dfrac{{{{\cos }^2}\theta }}{{\sin \theta }}} \right){\text{ ......eq.(1)}} \\
\]
Differentiating the parameter \[y\] with respect to \[\theta \], we get
\[ \Rightarrow \dfrac{{dy}}{{d\theta }} = a\cos \theta {\text{ ......eq.(2)}}\]
Dividing equation (2) by equation (1) to find \[\dfrac{{dy}}{{dx}}\], we get
\[
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{a\cos \theta \sin \theta }}{{a{{\cos }^2}\theta }} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\sin \theta }}{{\cos \theta }} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \tan \theta \\
\]
Hence, option B is correct.
Note: In this question, we have used basic trigonometric identities here to remember such identities, which will enable us to solve questions easily. Students should not substitute the value of \[\dfrac{{dy}}{{d\theta }}\]and \[\dfrac{{dx}}{{d\theta }}\] directly to find the expression asked. Calculate \[\dfrac{{dx}}{{d\theta }}\] and \[\dfrac{{dy}}{{d\theta }}\] separately or else will get the wrong result. One should know the differentiation properties to solve this question.
Complete step by step answer:
We are given that \[x = a\left\{ {\cos \theta + \log \tan \left( {\dfrac{\theta }{2}} \right)} \right\}\] and \[y = a\sin \theta \].
First, we have to differentiate both parameters \[x\] and \[y\] with respect to \[\theta \] to find the derivative \[\dfrac{{dy}}{{dx}}\].
Now diving both the above differentiation, we get
\[
\Rightarrow \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}} \\
\Rightarrow \dfrac{{dy}}{{d\theta }} \times \dfrac{{d\theta }}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} \\
\]
Differentiating the parameter \[x\] with respect to \[\theta \], we get
\[
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( { - \sin \theta + \dfrac{{{{\sec }^2}\theta }}{{\tan \dfrac{\theta }{2}}} \times \dfrac{1}{2}} \right) \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( { - \sin \theta + \dfrac{{\cos \dfrac{\theta }{2}}}{{{{\cos }^2}\dfrac{\theta }{2}\sin \dfrac{\theta }{2}}} \times \dfrac{1}{2}} \right) \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( { - \sin \theta + \dfrac{1}{{2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}}} \right) \\
\]
Using the property,\[\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}\] in the above equation, we get
\[
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( { - \sin \theta + \dfrac{1}{{\sin \theta }}} \right) \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( {\dfrac{{ - {{\sin }^2}\theta + 1}}{{\sin \theta }}} \right) \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( {\dfrac{{1 - {{\sin }^2}\theta }}{{\sin \theta }}} \right) \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( {\dfrac{{{{\cos }^2}\theta }}{{\sin \theta }}} \right){\text{ ......eq.(1)}} \\
\]
Differentiating the parameter \[y\] with respect to \[\theta \], we get
\[ \Rightarrow \dfrac{{dy}}{{d\theta }} = a\cos \theta {\text{ ......eq.(2)}}\]
Dividing equation (2) by equation (1) to find \[\dfrac{{dy}}{{dx}}\], we get
\[
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{a\cos \theta \sin \theta }}{{a{{\cos }^2}\theta }} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\sin \theta }}{{\cos \theta }} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \tan \theta \\
\]
Hence, option B is correct.
Note: In this question, we have used basic trigonometric identities here to remember such identities, which will enable us to solve questions easily. Students should not substitute the value of \[\dfrac{{dy}}{{d\theta }}\]and \[\dfrac{{dx}}{{d\theta }}\] directly to find the expression asked. Calculate \[\dfrac{{dx}}{{d\theta }}\] and \[\dfrac{{dy}}{{d\theta }}\] separately or else will get the wrong result. One should know the differentiation properties to solve this question.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

