
If $x = 2 + {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}$, then the value of ${x^3} - 6{x^2} + 6x\,$is
$
A.\,\,3 \\
B.\,\,2 \\
C.\,\,1 \\
D.\,\, - 2 \\
$
Answer
609.9k+ views
Hint : (Use the given equation to get the value of asked equation. Start solving from first equation and use that in second equation for final answer)
The given equations are
$x = 2 + {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}$ ……(i)
${x^3} - 6{x^2} + 6x\,$……(ii)
We have to find the value of second equation
We will do operation in first equation to get the value of second
As we know ${(a - b)^3} = {a^3} - {b^3} + 3a{b^2} - 3{a^2}b$
On considering equation one and solving
$
x = 2 + {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}} \\
x - 2 = {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}} \\
\\
$
Cubing both sides we get,
$
{(x - 2)^3} = {({2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}})^3} \\
{x^3} - 8 - 6{x^2} + 12x = {2^{\dfrac{{2(3)}}{3}}} + {2^{\dfrac{{1(3)}}{3}}} + {3.2^{\dfrac{{2(2)}}{3}}}{.2^{\dfrac{1}{3}}} + {3.2^{\dfrac{{1(2)}}{3}}}{.2^{\dfrac{2}{3}}} \\
$
On subtracting $6x$ from both sides we get,
$
{x^3} - 6{x^2} + 12x - 6x = 8 + 6 + 3({2^{\dfrac{5}{3}}} + {2^{\dfrac{4}{3}}}) - 6x \\
{x^3} - 6{x^2} + 6x = 14 + 3({2^{\dfrac{5}{3}}} + {2^{\dfrac{4}{3}}}) - 6(2 + {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}) \\
{x^3} - 6{x^2} + 6x = 2 + 3({2^{\dfrac{5}{3}}}) + 3({2^{\dfrac{4}{3}}}) - 6({2^{\dfrac{2}{3}}}) - 6({2^{\dfrac{1}{3}}}) \\
{x^3} - 6{x^2} + 6x = 2 + 3(2)({2^{\dfrac{2}{3}}}) + 3(2)({2^{\dfrac{1}{3}}}) - 6({2^{\dfrac{2}{3}}}) - 6({2^{\dfrac{1}{3}}}) \\
{x^3} - 6{x^2} + 6x = 2 \\
$
Hence the value of the second equation is 2 .
Therefore the correct option is B.
Note :- In this question we have used the formula of ${(a - b)^3} = {a^3} - {b^3} + 3a{b^2} - 3{a^2}b $in equation (i) above. We then got the value of equation (ii) by simplifying the equation (i). We have also used the concept of adding of the power when the base is same during obtaining the value of asked equation. There is nothing needed other than this to solve this question. Never try to put the values directly, it will make equation complex and the solution will not look good.
The given equations are
$x = 2 + {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}$ ……(i)
${x^3} - 6{x^2} + 6x\,$……(ii)
We have to find the value of second equation
We will do operation in first equation to get the value of second
As we know ${(a - b)^3} = {a^3} - {b^3} + 3a{b^2} - 3{a^2}b$
On considering equation one and solving
$
x = 2 + {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}} \\
x - 2 = {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}} \\
\\
$
Cubing both sides we get,
$
{(x - 2)^3} = {({2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}})^3} \\
{x^3} - 8 - 6{x^2} + 12x = {2^{\dfrac{{2(3)}}{3}}} + {2^{\dfrac{{1(3)}}{3}}} + {3.2^{\dfrac{{2(2)}}{3}}}{.2^{\dfrac{1}{3}}} + {3.2^{\dfrac{{1(2)}}{3}}}{.2^{\dfrac{2}{3}}} \\
$
On subtracting $6x$ from both sides we get,
$
{x^3} - 6{x^2} + 12x - 6x = 8 + 6 + 3({2^{\dfrac{5}{3}}} + {2^{\dfrac{4}{3}}}) - 6x \\
{x^3} - 6{x^2} + 6x = 14 + 3({2^{\dfrac{5}{3}}} + {2^{\dfrac{4}{3}}}) - 6(2 + {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}) \\
{x^3} - 6{x^2} + 6x = 2 + 3({2^{\dfrac{5}{3}}}) + 3({2^{\dfrac{4}{3}}}) - 6({2^{\dfrac{2}{3}}}) - 6({2^{\dfrac{1}{3}}}) \\
{x^3} - 6{x^2} + 6x = 2 + 3(2)({2^{\dfrac{2}{3}}}) + 3(2)({2^{\dfrac{1}{3}}}) - 6({2^{\dfrac{2}{3}}}) - 6({2^{\dfrac{1}{3}}}) \\
{x^3} - 6{x^2} + 6x = 2 \\
$
Hence the value of the second equation is 2 .
Therefore the correct option is B.
Note :- In this question we have used the formula of ${(a - b)^3} = {a^3} - {b^3} + 3a{b^2} - 3{a^2}b $in equation (i) above. We then got the value of equation (ii) by simplifying the equation (i). We have also used the concept of adding of the power when the base is same during obtaining the value of asked equation. There is nothing needed other than this to solve this question. Never try to put the values directly, it will make equation complex and the solution will not look good.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

