
If $x = 2 + {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}$, then the value of ${x^3} - 6{x^2} + 6x\,$is
$
A.\,\,3 \\
B.\,\,2 \\
C.\,\,1 \\
D.\,\, - 2 \\
$
Answer
596.7k+ views
Hint : (Use the given equation to get the value of asked equation. Start solving from first equation and use that in second equation for final answer)
The given equations are
$x = 2 + {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}$ ……(i)
${x^3} - 6{x^2} + 6x\,$……(ii)
We have to find the value of second equation
We will do operation in first equation to get the value of second
As we know ${(a - b)^3} = {a^3} - {b^3} + 3a{b^2} - 3{a^2}b$
On considering equation one and solving
$
x = 2 + {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}} \\
x - 2 = {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}} \\
\\
$
Cubing both sides we get,
$
{(x - 2)^3} = {({2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}})^3} \\
{x^3} - 8 - 6{x^2} + 12x = {2^{\dfrac{{2(3)}}{3}}} + {2^{\dfrac{{1(3)}}{3}}} + {3.2^{\dfrac{{2(2)}}{3}}}{.2^{\dfrac{1}{3}}} + {3.2^{\dfrac{{1(2)}}{3}}}{.2^{\dfrac{2}{3}}} \\
$
On subtracting $6x$ from both sides we get,
$
{x^3} - 6{x^2} + 12x - 6x = 8 + 6 + 3({2^{\dfrac{5}{3}}} + {2^{\dfrac{4}{3}}}) - 6x \\
{x^3} - 6{x^2} + 6x = 14 + 3({2^{\dfrac{5}{3}}} + {2^{\dfrac{4}{3}}}) - 6(2 + {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}) \\
{x^3} - 6{x^2} + 6x = 2 + 3({2^{\dfrac{5}{3}}}) + 3({2^{\dfrac{4}{3}}}) - 6({2^{\dfrac{2}{3}}}) - 6({2^{\dfrac{1}{3}}}) \\
{x^3} - 6{x^2} + 6x = 2 + 3(2)({2^{\dfrac{2}{3}}}) + 3(2)({2^{\dfrac{1}{3}}}) - 6({2^{\dfrac{2}{3}}}) - 6({2^{\dfrac{1}{3}}}) \\
{x^3} - 6{x^2} + 6x = 2 \\
$
Hence the value of the second equation is 2 .
Therefore the correct option is B.
Note :- In this question we have used the formula of ${(a - b)^3} = {a^3} - {b^3} + 3a{b^2} - 3{a^2}b $in equation (i) above. We then got the value of equation (ii) by simplifying the equation (i). We have also used the concept of adding of the power when the base is same during obtaining the value of asked equation. There is nothing needed other than this to solve this question. Never try to put the values directly, it will make equation complex and the solution will not look good.
The given equations are
$x = 2 + {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}$ ……(i)
${x^3} - 6{x^2} + 6x\,$……(ii)
We have to find the value of second equation
We will do operation in first equation to get the value of second
As we know ${(a - b)^3} = {a^3} - {b^3} + 3a{b^2} - 3{a^2}b$
On considering equation one and solving
$
x = 2 + {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}} \\
x - 2 = {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}} \\
\\
$
Cubing both sides we get,
$
{(x - 2)^3} = {({2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}})^3} \\
{x^3} - 8 - 6{x^2} + 12x = {2^{\dfrac{{2(3)}}{3}}} + {2^{\dfrac{{1(3)}}{3}}} + {3.2^{\dfrac{{2(2)}}{3}}}{.2^{\dfrac{1}{3}}} + {3.2^{\dfrac{{1(2)}}{3}}}{.2^{\dfrac{2}{3}}} \\
$
On subtracting $6x$ from both sides we get,
$
{x^3} - 6{x^2} + 12x - 6x = 8 + 6 + 3({2^{\dfrac{5}{3}}} + {2^{\dfrac{4}{3}}}) - 6x \\
{x^3} - 6{x^2} + 6x = 14 + 3({2^{\dfrac{5}{3}}} + {2^{\dfrac{4}{3}}}) - 6(2 + {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}) \\
{x^3} - 6{x^2} + 6x = 2 + 3({2^{\dfrac{5}{3}}}) + 3({2^{\dfrac{4}{3}}}) - 6({2^{\dfrac{2}{3}}}) - 6({2^{\dfrac{1}{3}}}) \\
{x^3} - 6{x^2} + 6x = 2 + 3(2)({2^{\dfrac{2}{3}}}) + 3(2)({2^{\dfrac{1}{3}}}) - 6({2^{\dfrac{2}{3}}}) - 6({2^{\dfrac{1}{3}}}) \\
{x^3} - 6{x^2} + 6x = 2 \\
$
Hence the value of the second equation is 2 .
Therefore the correct option is B.
Note :- In this question we have used the formula of ${(a - b)^3} = {a^3} - {b^3} + 3a{b^2} - 3{a^2}b $in equation (i) above. We then got the value of equation (ii) by simplifying the equation (i). We have also used the concept of adding of the power when the base is same during obtaining the value of asked equation. There is nothing needed other than this to solve this question. Never try to put the values directly, it will make equation complex and the solution will not look good.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

