
If we have \[x\ne 0,y\ne 0,z\ne 0\] and \[\left| \begin{matrix}
1+x & 1 & 1 \\
1+y & 1+2y & 1 \\
1+z & 1+z & 1+3z \\
\end{matrix} \right|=0\] then \[{{x}^{-1}}+{{y}^{-1}}+{{z}^{-1}}\] is equal to
(a) -1
(b) -2
(c) -3
(d) \[\dfrac{1}{3}\]
Answer
460.2k+ views
Hint: In this type of question we have to use the concept of determinants. We will apply row and column transformations on the given determinant to simplify the calculation of finding determinant. And then we expand the determinant along the first row and then equate it to 0 so that we get an equation. We simplify this equation to obtain the value of \[{{x}^{-1}}+{{y}^{-1}}+{{z}^{-1}}\].
Complete step-by-step solution:
Now, we have to find the value of \[{{x}^{-1}}+{{y}^{-1}}+{{z}^{-1}}\] if \[x\ne 0,y\ne 0,z\ne 0\] and \[\left| \begin{matrix}
1+x & 1 & 1 \\
1+y & 1+2y & 1 \\
1+z & 1+z & 1+3z \\
\end{matrix} \right|=0\].
We have given that,
\[\Rightarrow \left| \begin{matrix}
1+x & 1 & 1 \\
1+y & 1+2y & 1 \\
1+z & 1+z & 1+3z \\
\end{matrix} \right|=0\]
Let us apply row transformation to simplify the determinant,
By dividing \[{{\text{R}}_{1}},{{\text{R}}_{2}}\text{ }\!\!\And\!\!\text{ }{{\text{R}}_{3}}\] by \[x,y\And z\] respectively we can write,
\[\Rightarrow xyz\left| \begin{matrix}
1+\dfrac{1}{x} & \dfrac{1}{x} & \dfrac{1}{x} \\
1+\dfrac{1}{y} & 2+\dfrac{1}{y} & \dfrac{1}{y} \\
1+\dfrac{1}{z} & 1+\dfrac{1}{z} & 3+\dfrac{1}{z} \\
\end{matrix} \right|=0\]
Now by applying \[{{\text{R}}_{1}}\to {{\text{R}}_{1}}\text{+ }{{\text{R}}_{2}}\text{+ }{{\text{R}}_{3}}\], we will have,
\[\Rightarrow xyz\left| \begin{matrix}
3+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} & 3+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} & 3+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} \\
1+\dfrac{1}{y} & 2+\dfrac{1}{y} & \dfrac{1}{y} \\
1+\dfrac{1}{z} & 1+\dfrac{1}{z} & 3+\dfrac{1}{z} \\
\end{matrix} \right|=0\]
By taking out common \[\left( 3+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} \right)\] from \[{{\text{R}}_{1}}\] we can write
\[\Rightarrow \left( 3+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} \right)xyz\left| \begin{matrix}
1 & 1 & 1 \\
1+\dfrac{1}{y} & 2+\dfrac{1}{y} & \dfrac{1}{y} \\
1+\dfrac{1}{z} & 1+\dfrac{1}{z} & 3+\dfrac{1}{z} \\
\end{matrix} \right|=0\]
Now, let us apply column transformation to simplify it further.
By applying \[{{\text{C}}_{2}}\to {{\text{C}}_{2}}-{{\text{C}}_{1}},\text{ }{{\text{C}}_{3}}\to {{\text{C}}_{3}}-{{\text{C}}_{1}}\] we will have,
\[\Rightarrow \left( 3+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} \right)xyz\left| \begin{matrix}
1 & 0 & 0 \\
1+\dfrac{1}{y} & 1 & -1 \\
1+\dfrac{1}{z} & 0 & 2 \\
\end{matrix} \right|=0\]
Now we will expand the determinant along the first row,
\[\begin{align}
& \Rightarrow \left( 3+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} \right)xyz\left[ 2-0 \right]=0 \\
& \Rightarrow 2xyz\left( 3+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} \right)=0 \\
& \Rightarrow \left( 3+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} \right)=0 \\
& \Rightarrow \left( \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} \right)=-3 \\
& \Rightarrow {{x}^{-1}}+{{y}^{-1}}+{{z}^{-1}}=-3 \\
\end{align}\]
Hence, option (c) is the correct.
Note: In this type of question students have to note that we can expand the determinant along any row or any column. Also students have to take into consideration that we can apply row and column transformations simultaneously to simplify the calculations of finding the value of the determinants. Also students have to remember that if the value of the determinant is equal to zero, then the corresponding matrix is known as a singular matrix.
Complete step-by-step solution:
Now, we have to find the value of \[{{x}^{-1}}+{{y}^{-1}}+{{z}^{-1}}\] if \[x\ne 0,y\ne 0,z\ne 0\] and \[\left| \begin{matrix}
1+x & 1 & 1 \\
1+y & 1+2y & 1 \\
1+z & 1+z & 1+3z \\
\end{matrix} \right|=0\].
We have given that,
\[\Rightarrow \left| \begin{matrix}
1+x & 1 & 1 \\
1+y & 1+2y & 1 \\
1+z & 1+z & 1+3z \\
\end{matrix} \right|=0\]
Let us apply row transformation to simplify the determinant,
By dividing \[{{\text{R}}_{1}},{{\text{R}}_{2}}\text{ }\!\!\And\!\!\text{ }{{\text{R}}_{3}}\] by \[x,y\And z\] respectively we can write,
\[\Rightarrow xyz\left| \begin{matrix}
1+\dfrac{1}{x} & \dfrac{1}{x} & \dfrac{1}{x} \\
1+\dfrac{1}{y} & 2+\dfrac{1}{y} & \dfrac{1}{y} \\
1+\dfrac{1}{z} & 1+\dfrac{1}{z} & 3+\dfrac{1}{z} \\
\end{matrix} \right|=0\]
Now by applying \[{{\text{R}}_{1}}\to {{\text{R}}_{1}}\text{+ }{{\text{R}}_{2}}\text{+ }{{\text{R}}_{3}}\], we will have,
\[\Rightarrow xyz\left| \begin{matrix}
3+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} & 3+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} & 3+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} \\
1+\dfrac{1}{y} & 2+\dfrac{1}{y} & \dfrac{1}{y} \\
1+\dfrac{1}{z} & 1+\dfrac{1}{z} & 3+\dfrac{1}{z} \\
\end{matrix} \right|=0\]
By taking out common \[\left( 3+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} \right)\] from \[{{\text{R}}_{1}}\] we can write
\[\Rightarrow \left( 3+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} \right)xyz\left| \begin{matrix}
1 & 1 & 1 \\
1+\dfrac{1}{y} & 2+\dfrac{1}{y} & \dfrac{1}{y} \\
1+\dfrac{1}{z} & 1+\dfrac{1}{z} & 3+\dfrac{1}{z} \\
\end{matrix} \right|=0\]
Now, let us apply column transformation to simplify it further.
By applying \[{{\text{C}}_{2}}\to {{\text{C}}_{2}}-{{\text{C}}_{1}},\text{ }{{\text{C}}_{3}}\to {{\text{C}}_{3}}-{{\text{C}}_{1}}\] we will have,
\[\Rightarrow \left( 3+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} \right)xyz\left| \begin{matrix}
1 & 0 & 0 \\
1+\dfrac{1}{y} & 1 & -1 \\
1+\dfrac{1}{z} & 0 & 2 \\
\end{matrix} \right|=0\]
Now we will expand the determinant along the first row,
\[\begin{align}
& \Rightarrow \left( 3+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} \right)xyz\left[ 2-0 \right]=0 \\
& \Rightarrow 2xyz\left( 3+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} \right)=0 \\
& \Rightarrow \left( 3+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} \right)=0 \\
& \Rightarrow \left( \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} \right)=-3 \\
& \Rightarrow {{x}^{-1}}+{{y}^{-1}}+{{z}^{-1}}=-3 \\
\end{align}\]
Hence, option (c) is the correct.
Note: In this type of question students have to note that we can expand the determinant along any row or any column. Also students have to take into consideration that we can apply row and column transformations simultaneously to simplify the calculations of finding the value of the determinants. Also students have to remember that if the value of the determinant is equal to zero, then the corresponding matrix is known as a singular matrix.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
