
If we have $x=a\sin t$ and $y=a\left( \cos t+\log \left( \tan \dfrac{t}{2} \right) \right)$ then find $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$.
Answer
574.8k+ views
Hint: We find the first order derivative and again differentiate the first order derivative to find the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$. As the given equation is function of $t$ and we have to find the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$, we can write as $\dfrac{dy}{dx}=\dfrac{dy}{dt}\times \dfrac{dt}{dx}$. We differentiate the given equations with respect to $t$ and substitute the values to obtain a desired answer. We also use the chain rule to solve this question. The following derivatives we use in this question:
$\dfrac{d}{dt}\sin t=\cos t$
$\dfrac{d}{dt}\tan t={{\sec }^{2}}t$
$\dfrac{d}{dt}\log t=\dfrac{1}{t}$
$\dfrac{d}{dt}\cos t=-\sin t$
Complete step by step answer:
We have given that $x=a\sin t$ and $y=a\left( \cos t+\log \left( \tan \dfrac{t}{2} \right) \right)$
We have to find $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$.
As we know that $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ is the second order derivative, then first we have to calculate $\dfrac{dy}{dx}$.
Now, $\dfrac{dy}{dx}=\dfrac{dy}{dx}\times \dfrac{dt}{dt}$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{dy}{dt}\times \dfrac{dt}{dx}$ as the given equations are functions of $t$ .
Now, consider the equation $x=a\sin t$.
When we differentiate the equation with respect to $t$, we get
$\begin{align}
& x=a\sin t \\
& \dfrac{dx}{dt}=\dfrac{d}{dt}\left( a\sin t \right) \\
\end{align}$
Taking constant term out, we get
$\dfrac{dx}{dt}=a\dfrac{d}{dt}\left( \sin t \right)$
Now, we know that $\dfrac{d}{dt}\sin t=\cos t$
Then $\dfrac{dx}{dt}=a\cos t...........(i)$
Now, consider equation $y=a\left( \cos t+\log \left( \tan \dfrac{t}{2} \right) \right)$
When we differentiate the equation with respect to $t$, we get
\[\begin{align}
& y=a\left( \cos t+\log \left( \tan \dfrac{t}{2} \right) \right) \\
& \Rightarrow \dfrac{dy}{dt}=a\dfrac{d}{dt}\left( \cos t+\log \left( \tan \dfrac{t}{2} \right) \right) \\
& \Rightarrow \dfrac{dy}{dt}=a\left( \dfrac{d}{dt}\cos t+\dfrac{d}{dt}\log \left( \tan \dfrac{t}{2} \right) \right) \\
\end{align}\]
Now, we know that $\dfrac{d}{dt}\log t=\dfrac{1}{t}$ and $\dfrac{d}{dt}\cos t=-\sin t$
We know that $\dfrac{d}{dt}\tan t={{\sec }^{2}}t$
Also, we use chain rule to solve \[\dfrac{d}{dt}\log \left( \tan \dfrac{t}{2} \right)\], which is as follows:
\[\begin{align}
& \Rightarrow \dfrac{1}{\left( \tan \dfrac{t}{2} \right)}\dfrac{d}{dt}\left( \tan \dfrac{t}{2} \right) \\
& \Rightarrow \dfrac{1}{\left( \tan \dfrac{t}{2} \right)}\left( {{\sec }^{2}}\dfrac{t}{2} \right)\dfrac{d}{dt}\left( \dfrac{t}{2} \right) \\
& \Rightarrow \dfrac{1}{\left( \tan \dfrac{t}{2} \right)}\left( {{\sec }^{2}}\dfrac{t}{2} \right)\dfrac{1}{2} \\
\end{align}\]
When we substitute the values, we get
\[\Rightarrow \dfrac{dy}{dt}=a\left( -\sin t+\dfrac{1}{\left( \tan \dfrac{t}{2} \right)}.{{\sec }^{2}}\dfrac{t}{2}.\dfrac{1}{2} \right)\]
Now, we know that $\dfrac{1}{\tan \dfrac{t}{2}}=\cot \dfrac{t}{2}=\dfrac{\cos \dfrac{t}{2}}{\sin \dfrac{t}{2}}$ and $\sec \dfrac{t}{2}=\dfrac{1}{\cos \dfrac{t}{2}}$ .
Now, substitute the values, we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dt}=a\left( -\sin t+\dfrac{\cos \dfrac{t}{2}}{\sin \dfrac{t}{2}}.\dfrac{1}{{{\cos }^{2}}\dfrac{t}{2}}.\dfrac{1}{2} \right) \\
& \Rightarrow \dfrac{dy}{dt}=a\left( -\sin t+\dfrac{1}{\sin \dfrac{t}{2}}.\dfrac{1}{\cos \dfrac{t}{2}}.\dfrac{1}{2} \right) \\
& \Rightarrow \dfrac{dy}{dt}=a\left( -\sin t+\dfrac{1}{2\sin \dfrac{t}{2}\cos \dfrac{t}{2}} \right) \\
\end{align}\]
Now, we know that $2\sin A\cos A=\sin 2A$
So,
\[\begin{align}
& \Rightarrow \dfrac{dy}{dt}=a\left( -\sin t+\dfrac{1}{\sin 2.\dfrac{t}{2}} \right) \\
& \Rightarrow \dfrac{dy}{dt}=a\left( -\sin t+\dfrac{1}{\sin t} \right) \\
\end{align}\]
Now, simplify further we get
\[\Rightarrow \dfrac{dy}{dt}=a\left( \dfrac{1-{{\sin }^{2}}t}{\sin t} \right)\]
Now, we know that \[1-{{\sin }^{2}}t={{\cos }^{2}}t\]
Now, we get
\[\Rightarrow \dfrac{dy}{dt}=a\left( \dfrac{{{\cos }^{2}}t}{\sin t} \right)...................(ii)\]
Now, we have $\Rightarrow \dfrac{dy}{dx}=\dfrac{dy}{dt}\times \dfrac{dt}{dx}$, substitute the values from equation (i) and (ii), we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=a\left( \dfrac{{{\cos }^{2}}t}{\sin t} \right)\times \dfrac{1}{a\cos t} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{\cos t}{\sin t} \\
& \Rightarrow \dfrac{dy}{dx}=\cot t \\
\end{align}\]
Now, to find $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$, we again differentiate the above equation with respect to $x$
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \cot t \right)$
Now we know that $\dfrac{d}{dx}\left( \cot x \right)=-cose{{c}^{2}}x$
So, we get
$\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-cose{{c}^{2}}t\dfrac{dt}{dx} \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-cose{{c}^{2}}t\times \dfrac{1}{a\cos t} \\
\end{align}$
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-cose{{c}^{2}}t}{a\cos t}$
So, the correct answer is “Option A”.
Note: To solve such a type of question we need to have knowledge about the differentiation formulas. As this question has a complex calculation while solving differentiation so try to solve step by step. As we stop the calculation at $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-cose{{c}^{2}}t}{a\cos t}$, if you want to solve further, use identities.
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-cose{{c}^{2}}t}{a\cos t}$
As we know that $\cos ec\theta =\dfrac{1}{\sin \theta }$
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{1}{a{{\sin }^{2}}t\cos t}$
$\dfrac{d}{dt}\sin t=\cos t$
$\dfrac{d}{dt}\tan t={{\sec }^{2}}t$
$\dfrac{d}{dt}\log t=\dfrac{1}{t}$
$\dfrac{d}{dt}\cos t=-\sin t$
Complete step by step answer:
We have given that $x=a\sin t$ and $y=a\left( \cos t+\log \left( \tan \dfrac{t}{2} \right) \right)$
We have to find $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$.
As we know that $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ is the second order derivative, then first we have to calculate $\dfrac{dy}{dx}$.
Now, $\dfrac{dy}{dx}=\dfrac{dy}{dx}\times \dfrac{dt}{dt}$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{dy}{dt}\times \dfrac{dt}{dx}$ as the given equations are functions of $t$ .
Now, consider the equation $x=a\sin t$.
When we differentiate the equation with respect to $t$, we get
$\begin{align}
& x=a\sin t \\
& \dfrac{dx}{dt}=\dfrac{d}{dt}\left( a\sin t \right) \\
\end{align}$
Taking constant term out, we get
$\dfrac{dx}{dt}=a\dfrac{d}{dt}\left( \sin t \right)$
Now, we know that $\dfrac{d}{dt}\sin t=\cos t$
Then $\dfrac{dx}{dt}=a\cos t...........(i)$
Now, consider equation $y=a\left( \cos t+\log \left( \tan \dfrac{t}{2} \right) \right)$
When we differentiate the equation with respect to $t$, we get
\[\begin{align}
& y=a\left( \cos t+\log \left( \tan \dfrac{t}{2} \right) \right) \\
& \Rightarrow \dfrac{dy}{dt}=a\dfrac{d}{dt}\left( \cos t+\log \left( \tan \dfrac{t}{2} \right) \right) \\
& \Rightarrow \dfrac{dy}{dt}=a\left( \dfrac{d}{dt}\cos t+\dfrac{d}{dt}\log \left( \tan \dfrac{t}{2} \right) \right) \\
\end{align}\]
Now, we know that $\dfrac{d}{dt}\log t=\dfrac{1}{t}$ and $\dfrac{d}{dt}\cos t=-\sin t$
We know that $\dfrac{d}{dt}\tan t={{\sec }^{2}}t$
Also, we use chain rule to solve \[\dfrac{d}{dt}\log \left( \tan \dfrac{t}{2} \right)\], which is as follows:
\[\begin{align}
& \Rightarrow \dfrac{1}{\left( \tan \dfrac{t}{2} \right)}\dfrac{d}{dt}\left( \tan \dfrac{t}{2} \right) \\
& \Rightarrow \dfrac{1}{\left( \tan \dfrac{t}{2} \right)}\left( {{\sec }^{2}}\dfrac{t}{2} \right)\dfrac{d}{dt}\left( \dfrac{t}{2} \right) \\
& \Rightarrow \dfrac{1}{\left( \tan \dfrac{t}{2} \right)}\left( {{\sec }^{2}}\dfrac{t}{2} \right)\dfrac{1}{2} \\
\end{align}\]
When we substitute the values, we get
\[\Rightarrow \dfrac{dy}{dt}=a\left( -\sin t+\dfrac{1}{\left( \tan \dfrac{t}{2} \right)}.{{\sec }^{2}}\dfrac{t}{2}.\dfrac{1}{2} \right)\]
Now, we know that $\dfrac{1}{\tan \dfrac{t}{2}}=\cot \dfrac{t}{2}=\dfrac{\cos \dfrac{t}{2}}{\sin \dfrac{t}{2}}$ and $\sec \dfrac{t}{2}=\dfrac{1}{\cos \dfrac{t}{2}}$ .
Now, substitute the values, we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dt}=a\left( -\sin t+\dfrac{\cos \dfrac{t}{2}}{\sin \dfrac{t}{2}}.\dfrac{1}{{{\cos }^{2}}\dfrac{t}{2}}.\dfrac{1}{2} \right) \\
& \Rightarrow \dfrac{dy}{dt}=a\left( -\sin t+\dfrac{1}{\sin \dfrac{t}{2}}.\dfrac{1}{\cos \dfrac{t}{2}}.\dfrac{1}{2} \right) \\
& \Rightarrow \dfrac{dy}{dt}=a\left( -\sin t+\dfrac{1}{2\sin \dfrac{t}{2}\cos \dfrac{t}{2}} \right) \\
\end{align}\]
Now, we know that $2\sin A\cos A=\sin 2A$
So,
\[\begin{align}
& \Rightarrow \dfrac{dy}{dt}=a\left( -\sin t+\dfrac{1}{\sin 2.\dfrac{t}{2}} \right) \\
& \Rightarrow \dfrac{dy}{dt}=a\left( -\sin t+\dfrac{1}{\sin t} \right) \\
\end{align}\]
Now, simplify further we get
\[\Rightarrow \dfrac{dy}{dt}=a\left( \dfrac{1-{{\sin }^{2}}t}{\sin t} \right)\]
Now, we know that \[1-{{\sin }^{2}}t={{\cos }^{2}}t\]
Now, we get
\[\Rightarrow \dfrac{dy}{dt}=a\left( \dfrac{{{\cos }^{2}}t}{\sin t} \right)...................(ii)\]
Now, we have $\Rightarrow \dfrac{dy}{dx}=\dfrac{dy}{dt}\times \dfrac{dt}{dx}$, substitute the values from equation (i) and (ii), we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=a\left( \dfrac{{{\cos }^{2}}t}{\sin t} \right)\times \dfrac{1}{a\cos t} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{\cos t}{\sin t} \\
& \Rightarrow \dfrac{dy}{dx}=\cot t \\
\end{align}\]
Now, to find $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$, we again differentiate the above equation with respect to $x$
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \cot t \right)$
Now we know that $\dfrac{d}{dx}\left( \cot x \right)=-cose{{c}^{2}}x$
So, we get
$\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-cose{{c}^{2}}t\dfrac{dt}{dx} \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-cose{{c}^{2}}t\times \dfrac{1}{a\cos t} \\
\end{align}$
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-cose{{c}^{2}}t}{a\cos t}$
So, the correct answer is “Option A”.
Note: To solve such a type of question we need to have knowledge about the differentiation formulas. As this question has a complex calculation while solving differentiation so try to solve step by step. As we stop the calculation at $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-cose{{c}^{2}}t}{a\cos t}$, if you want to solve further, use identities.
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-cose{{c}^{2}}t}{a\cos t}$
As we know that $\cos ec\theta =\dfrac{1}{\sin \theta }$
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{1}{a{{\sin }^{2}}t\cos t}$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

