
If we have vetor \[\overrightarrow{a}=i-j+7k\] and vector \[\overrightarrow{b}=5i-j+\lambda k\], then find the value of \[\lambda \], so that \[\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-\overrightarrow{b}\] are perpendicular vectors.
Answer
576.6k+ views
Hint: We are given two vectors \[\overrightarrow{a}=i-j+7k\] and \[\overrightarrow{b}=5i-j+\lambda k\] first we will calculate the value of \[\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-\overrightarrow{b}\], which will be \[\overrightarrow{a}+\overrightarrow{b}=6i-2j+(7+\lambda )k\] and \[\overrightarrow{a}-\overrightarrow{b}=-4i+(7-\lambda )k\]
Now it’s given that \[\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-\overrightarrow{b}\] are perpendicular vectors.it means we can write their dot product will be 0, so \[(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}-\overrightarrow{b})=(6i-2j+(7+\lambda )k).(-4i+(7-\lambda )k)=0\] and on solving this equation we will get the value of \[\overrightarrow{a}-\overrightarrow{b}=-4i+(7-\lambda )k\]
Complete step-by-step solution:
Given two vectors \[\overrightarrow{a}=i-j+7k\] and \[\overrightarrow{b}=5i-j+\lambda k\] we are asked to find value of \[\lambda \], given condition is that \[\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-\overrightarrow{b}\] are perpendicular vectors, which means dot product of \[\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-\overrightarrow{b}\] is 0. So, for that we first have to calculate value of \[\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-\overrightarrow{b}\]
While calculating \[\overrightarrow{a}+\overrightarrow{b}\] we will add \[i\] components together, \[j\]components together and similarly \[k\] components together which results into \[\overrightarrow{a}+\overrightarrow{b}=(i-j+7k)+(5i-j+\lambda k)=(1+5)i-(1+1)j+(7+\lambda )k)\]
Which equals to \[\overrightarrow{a}+\overrightarrow{b}=6i-2j+(7+\lambda )k\] similarly we apply same procedure for calculating value of \[\overrightarrow{a}-\overrightarrow{b}\] , which results into.
\[\overrightarrow{a}-\overrightarrow{b}=(i-j+7k)-(5i-j+\lambda k)=(1-5)i+(1-1)j+(7-\lambda )k\]
Which equals to \[\overrightarrow{a}-\overrightarrow{b}=-4i+(7-\lambda )k\]
As given dot product of \[\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-\overrightarrow{b}\] is 0, applying this condition we can write as
\[(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}-\overrightarrow{b})=(6i-2j+(7+\lambda )k).(-4i+(7-\lambda )k)=0\]
Considering unit vector property in mind that is \[i.i={{i}^{2}}=1,j.j={{j}^{2}}=1,k.k={{k}^{2}}=1\]
And \[i.j=0,i.k=0,j.k=0\] (because unit vectors components are perpendicular to each other that’s why their dot product is 0)
Solving it and considering this property \[i.j=0, i.k=0, j.k=0\] we get our expression as \[6\times (-4){{i}^{2}}+(-2)\times 0{{j}^{2}}+(7+\lambda )(7-\lambda ){{k}^{2}}=0\]
Now putting this property \[i.i={{i}^{2}}=1,j.j={{j}^{2}}=1,k.k={{k}^{2}}=1\]
Our expression will look like
\[6\times (-4)+(-2)\times 0+(7+\lambda )(7-\lambda )=0\]
Which on solving looks like \[6\times (-4)+(7+\lambda )(7-\lambda )=0\]
(applying formula \[(a+b)(a-b)={{a}^{2}}-{{b}^{2}}\])
On further solving we get \[-24+0+49-{{\lambda }^{2}}=0\]
Now expression will look like \[{{\lambda }^{2}}=25\]
Hence value of \[\lambda \] is 5 and -5.
Note: We can also solve it directly by taking dot product of \[\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-\overrightarrow{b}\] at initially
\[(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}-\overrightarrow{b})\] which results to \[(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}-\overrightarrow{b})={{a}^{2}}-a.b+b.a-{{b}^{2}}\]
Now we know that \[a.b=b.a\] it means \[(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}-\overrightarrow{b})={{a}^{2}}-{{b}^{2}}\]
Given \[\overrightarrow{a}=i-j+7k\] and \[\overrightarrow{b}=5i-j+\lambda k\]
So \[{{a}^{2}}={{1}^{2}}+{{1}^{2}}+{{7}^{2}}=1+1+49=51\] and similarly \[{{b}^{2}}={{5}^{2}}+{{1}^{2}}+{{\lambda }^{2}}=25+1+{{\lambda }^{2}}=26+{{\lambda }^{2}}\]
\[(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}-\overrightarrow{b})={{a}^{2}}-{{b}^{2}}=0\] and on solving we again get the same result \[\lambda \] is 5 and -5
Now it’s given that \[\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-\overrightarrow{b}\] are perpendicular vectors.it means we can write their dot product will be 0, so \[(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}-\overrightarrow{b})=(6i-2j+(7+\lambda )k).(-4i+(7-\lambda )k)=0\] and on solving this equation we will get the value of \[\overrightarrow{a}-\overrightarrow{b}=-4i+(7-\lambda )k\]
Complete step-by-step solution:
Given two vectors \[\overrightarrow{a}=i-j+7k\] and \[\overrightarrow{b}=5i-j+\lambda k\] we are asked to find value of \[\lambda \], given condition is that \[\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-\overrightarrow{b}\] are perpendicular vectors, which means dot product of \[\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-\overrightarrow{b}\] is 0. So, for that we first have to calculate value of \[\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-\overrightarrow{b}\]
While calculating \[\overrightarrow{a}+\overrightarrow{b}\] we will add \[i\] components together, \[j\]components together and similarly \[k\] components together which results into \[\overrightarrow{a}+\overrightarrow{b}=(i-j+7k)+(5i-j+\lambda k)=(1+5)i-(1+1)j+(7+\lambda )k)\]
Which equals to \[\overrightarrow{a}+\overrightarrow{b}=6i-2j+(7+\lambda )k\] similarly we apply same procedure for calculating value of \[\overrightarrow{a}-\overrightarrow{b}\] , which results into.
\[\overrightarrow{a}-\overrightarrow{b}=(i-j+7k)-(5i-j+\lambda k)=(1-5)i+(1-1)j+(7-\lambda )k\]
Which equals to \[\overrightarrow{a}-\overrightarrow{b}=-4i+(7-\lambda )k\]
As given dot product of \[\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-\overrightarrow{b}\] is 0, applying this condition we can write as
\[(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}-\overrightarrow{b})=(6i-2j+(7+\lambda )k).(-4i+(7-\lambda )k)=0\]
Considering unit vector property in mind that is \[i.i={{i}^{2}}=1,j.j={{j}^{2}}=1,k.k={{k}^{2}}=1\]
And \[i.j=0,i.k=0,j.k=0\] (because unit vectors components are perpendicular to each other that’s why their dot product is 0)
Solving it and considering this property \[i.j=0, i.k=0, j.k=0\] we get our expression as \[6\times (-4){{i}^{2}}+(-2)\times 0{{j}^{2}}+(7+\lambda )(7-\lambda ){{k}^{2}}=0\]
Now putting this property \[i.i={{i}^{2}}=1,j.j={{j}^{2}}=1,k.k={{k}^{2}}=1\]
Our expression will look like
\[6\times (-4)+(-2)\times 0+(7+\lambda )(7-\lambda )=0\]
Which on solving looks like \[6\times (-4)+(7+\lambda )(7-\lambda )=0\]
(applying formula \[(a+b)(a-b)={{a}^{2}}-{{b}^{2}}\])
On further solving we get \[-24+0+49-{{\lambda }^{2}}=0\]
Now expression will look like \[{{\lambda }^{2}}=25\]
Hence value of \[\lambda \] is 5 and -5.
Note: We can also solve it directly by taking dot product of \[\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-\overrightarrow{b}\] at initially
\[(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}-\overrightarrow{b})\] which results to \[(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}-\overrightarrow{b})={{a}^{2}}-a.b+b.a-{{b}^{2}}\]
Now we know that \[a.b=b.a\] it means \[(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}-\overrightarrow{b})={{a}^{2}}-{{b}^{2}}\]
Given \[\overrightarrow{a}=i-j+7k\] and \[\overrightarrow{b}=5i-j+\lambda k\]
So \[{{a}^{2}}={{1}^{2}}+{{1}^{2}}+{{7}^{2}}=1+1+49=51\] and similarly \[{{b}^{2}}={{5}^{2}}+{{1}^{2}}+{{\lambda }^{2}}=25+1+{{\lambda }^{2}}=26+{{\lambda }^{2}}\]
\[(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}-\overrightarrow{b})={{a}^{2}}-{{b}^{2}}=0\] and on solving we again get the same result \[\lambda \] is 5 and -5
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

